




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、AppliedStatisticsforBusiness,DrxxxAssociateProfessorSchoolofEconomicsandManagementxxxx,AppliedBusinessStatistics,7thed.byKenBlack,Chapter3DescriptiveStatistics,LearningObjectives,Distinguishbetweenmeasuresofcentraltendency,measuresofvariability,measuresofshape,andmeasuresofassociation.Understandthem
2、eaningsofmean,median,mode,quartile,percentile,andrange.Computemean,median,mode,percentile,quartile,range,variance,standarddeviation,andmeanabsolutedeviationonungroupeddata.Differentiatebetweensampleandpopulationvarianceandstandarddeviation.,LearningObjectives-Continued,Understandthemeaningofstandard
3、deviationasitisappliedbyusingtheempiricalruleandChebyshevstheorem(切比雪夫定理).Computethemean,median,standarddeviation,andvarianceongroupeddata.Understandboxandwhiskerplots(箱线图,或者盒须图),skewness,andkurtosis.Computeacoefficientofcorrelationandinterpretit.,MeasuresofCentralTendency:UngroupedData,Measuresofce
4、ntraltendencyyieldinformationabout“particularplacesorlocationsinagroupofnumbers.”CommonMeasuresofLocationModeMedianMeanPercentilesQuartiles,Mode-themostfrequentlyoccurringvalueinadatasetApplicabletoalllevelsofdatameasurement(nominal,ordinal,interval,andratio)Canbeusedtodeterminewhatcategoriesoccurmo
5、stfrequentlySometimes,nomodeexists(noduplicates)BimodalInatieforthemostfrequentlyoccurringvalue,twomodesarelistedMultimodal-Datasetsthatcontainmorethantwomodes,Mode,Median,Median-middlevalueinanorderedarrayofnumbers.Halfthedataareaboveit,halfthedataarebelowitMathematically,itsthe(n+1)/2thorderedobse
6、rvationForanarraywithanoddnumberofterms,themedianisthemiddlenumbern=11=(n+1)/2th=12/2th=6thorderedobservationForanarraywithanevennumberoftermsthemedianistheaverageofthemiddletwonumbersn=10=(n+1)/2th=11/2th=5.5th=averageof5thand6thorderedobservation,ArithmeticMean,MeanistheaverageofagroupofnumbersApp
7、licableforintervalandratiodataNotapplicablefornominalorordinaldataAffectedbyeachvalueinthedataset,includingextremevaluesComputedbysummingallvaluesinthedatasetanddividingthesumbythenumberofvaluesinthedataset,ThenumberofU.S.carsinservicebytopcarrentalcompaniesinarecentyearaccordingtoAutoRentalNewsfoll
8、ows.Computethemode,themedian,andthemean.,DemonstrationProblem3.1,DemonstrationProblem3.1,SolutionsMode:9,000(twocompanieswith9,000carsinservice)Median:With13differentcompaniesinthisgroup,N=13.Themedianislocatedatthe(13+1)/2=7thposition.Becausethedataarealreadyordered,medianisthe7thterm,whichis20,000
9、.Mean:=x/N=(1,791,000/13)=137,769.23,Percentiles,Percentile-measuresofcentraltendencythatdivideagroupofdatainto100partsAtleastn%ofthedatalieatorbelowthenthpercentile,andatmost(100-n)%ofthedatalieabovethenthpercentileExample:90thpercentileindicatesthatat90%ofthedataareequaltoorlessthanit,and10%ofthed
10、atalieaboveit,CalculatingPercentiles,Tocalculatethepthpercentile,OrderthedataCalculatei=N(p/100)DeterminethepercentileIfiisawholenumber,thenusetheaverageoftheithand(i+1)thorderedobservationOtherwise,roundiuptothenexthighestwholenumber,Quartiles,Quartile-measuresofcentraltendencythatdivideagroupofdat
11、aintofoursubgroupsQ1:25%ofthedatasetisbelowthefirstquartileQ2:50%ofthedatasetisbelowthesecondquartileQ3:75%ofthedatasetisbelowthethirdquartile,Forthecarsinservicedata,n=13,soQ1:i=13(25/100)=3.25,sousethe4thorderedobservationQ1=9,000Q3:i=13(75/100)=9.75,sousethe10thorderedobservationQ3=204,000,Quarti
12、lesforDemonstrationProblem3.1,WhichMeasureDoIUse?,Whichmeasureofcentraltendencyismostappropriate?Ingeneral,themeanispreferred,sinceithasnicemathematicalproperties(inparticular,seechapter7)Themedianandquartiles,areresistanttooutliersConsiderthefollowingthreedatasets1,2,3(median=2,mean=2)1,2,6(median=
13、2,mean=3)1,2,30(median=2,mean=11)Allhavemedian=2,butthemeanissensitivetotheoutliersIngeneral,ifthereareoutliers,themedianispreferredtothemean,BoxandWhiskerPlot,WhyUseaBoxandWhiskerPlot?Boxandwhiskerplotsareveryeffectiveandeasytoread.Theysummarizedatafrommultiplesourcesanddisplaytheresultsinasinglegr
14、aph.Boxandwhiskerplotsallowforcomparisonofdatafromdifferentcategoriesforeasier,moreeffectivedecision-making.,Aboxandwhiskerplotisdevelopedfromfivestatistics.MinimumvaluethesmallestvalueinthedatasetSecondquartilethevaluebelowwhichthelower25%ofthedataarecontainedMedianvaluethemiddlenumberinarangeofnum
15、bersThirdquartilethevalueabovewhichtheupper25%ofthedataarecontainedMaximumvaluethelargestvalueinthedatasetSometypesarecalledboxandwhiskerplotswithoutliers.,MeasuresofVariability-toolsthatdescribethespreadorthedispersionofasetofdata.Providesmoremeaningfulinformationwhenusedwithmeasuresofcentraltenden
16、cyincomparisontoothergroups,MeasuresofVariability:UngroupedData,CommonMeasuresofVariabilityRangeInter-quartileRangeMeanAbsoluteDeviationVarianceandStandardDeviationCoefficientofVariation,MeasuresofSpreadorDispersion:UngroupedData,Range,ThedifferencebetweenthelargestandthesmallestvaluesinasetofdataAd
17、vantageeasytocomputeDisadvantageisaffectedbyextremevalues,InterquartileRange,InterquartileRange-rangeofvaluesbetweenthefirstandthirdquartilesRangeofthe“middlehalf”;middle50%Usefulwhenresearchersareinterestedinthemiddle50%,andnottheextremesExample:Forthecarsinservicedata,theIQRis204,0009,000=195,000,
18、Deviationsfromthemean,UsefulforintervalorratioleveldataAnexaminationofdeviationfromthemeancanrevealinformationaboutthevariabilityofthedataDeviationsareusedmostlyasatooltocomputeothermeasuresofvariabilityHowever,thesumofdeviationsfromthearithmeticmeanisalwayszero:Sum(X-)=0Therearetwowaystosolvethisco
19、nundrum,MeanAbsoluteDeviation(MAD),Onesolutionistotaketheabsolutevalueofeachdeviationaroundthemean.ThisiscalledtheMeanAbsoluteDeviationNotethatwhiletheMADisintuitivelysimple,itisrarelyusedinpractice,PopulationVariance,AnothersolutionistotaketheSumofSquaredDeviations(SSD)aboutthemeanThepopulationvari
20、anceistheaverageofthesquareddeviationsaboutthearithmeticmeanforasetofnumbers.Thepopulationvarianceisdenotedby/sigma/.,PopulationStandardDeviation,Thepopulationstandarddeviationisameasureofthespreadofadistribution.Asymmetricdistributioniscompletelydescribedbyitscenteratthemeananditsspreaddefinedbymul
21、tiplesofitsstandarddeviation.Thestandarddeviationisthesquarerootofthevariance.,WhatsthemeaningofStd.deviation?,EmpiricalruleItsusedtostatetheapproximatepercentageofvaluesthatliewithinagivennumberofstandarddeviationsfromthemeanofasetofdataifthedataarenormallydistributed.,*Empiricalrule,*Basedontheass
22、umptionthatthedataareapproximatelynormallydistributed.,ChebyshevvTheorem,Unlikeempiricalrule,Chebyshevstheoremappliestoalldistributionsregardlessoftheirshapeandthuscanbeusedwheneverthedatadistributionshapeisunknownorisnonnormal.,ChebyshevsTheoremWithinkstandarddeviationsfromthemean,k,lieatleastpropo
23、rtionofthevalues.Assumptionk1,SampleVariance,SampleVariance-averageofthesquareddeviationsfromthearithmeticmeanSampleVariancedenotedbys2,SampleStandardDeviation,SamplestandarddeviationisthesquarerootofthesamplevarianceSameunitsasoriginaldata,Theeffectivenessofdistrictattorneyscanbemeasuredbyseveralva
24、riables,includingthenumberofconvictionspermonth,thenumberofcaseshandledpermonth,andthetotalnumberofyearsofconvictionpermonth.Aresearcherusesasampleoffivedistrictattorneysinacityanddeterminesthetotalnumberofyearsofconvictionthateachattorneywonagainstdefendantsduringthepastmonth,asreportedinthefirstco
25、lumninthefollowingtabulations.Computethemeanabsolutedeviation,thevariance,andthestandarddeviationforthesefigures.,DemonstrationProblem3.6,DemonstrationProblem3.6,SolutionTheresearchercomputesthemeanabsolutedeviation,thevariance,andthestandarddeviationforthesedatainthefollowingmanner.,ZScores,Zscorer
26、epresentsthenumberofStdDevavalue(x)isaboveorbelowthemeanofasetofnumbersZscoreallowstranslationofavaluesrawdistancefromthemeanintounitsofstddevZ=(x-)/,CoefficientofVariation(CV)measuresthevolatilityofavalue(perhapsastockportfolio),relativetoitsmean.Itstheratioofthestandarddeviationtothemean,expressed
27、asapercentageUsefulwhencomparingStdDevcomputedfromdatawithdifferentmeansMeasurementofrelativedispersion,CoefficientofVariation,CoefficientofVariation,Considertwodifferentpopulations,Since15.8611.90,thefirstpopulationismorevariable,relativetoitsmean,thanthesecondpopulation,IntervalFrequency(f)Midpoin
28、t(M)f*M20-under3062515030-under40183563040-under50114549550-under60115560560-under7036519570-under8017575502150,CalculationofGroupedMean,Sometimesdataarealreadygrouped,andyouareinterestedincalculatingsummarystatistics,CumulativeClassIntervalFrequencyFrequency20-under306630-under40182440-under5011355
29、0-under60114660-under7034970-under80150N=50,MedianofGroupedData-Example,ModeofGroupedData,ClassIntervalFrequency20-under30630-under401840-under501150-under601160-under70370-under801,MidpointofthemodalclassModalclasshasthegreatestfrequency,VarianceandStandardDeviationofGroupedData,PopulationVariancea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030医用液体石蜡行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030化工燃料项目商业计划书
- 2025-2030化妆品香精行业市场发展分析及投资前景研究报告
- 牛津译林版英语七下Unit 5《Amazing things》(Grammar)(单元整体+课时教学设计)
- 小学英语试卷细目表
- 2024年度北京市专利代理师科目一(专利法律知识)自我提分评估(附答案)
- 九年级英语上册Unit4 Stories and poems Lesson22 The Giant(I)(单元整体+课时教学设计)新版冀教版
- 精读2024人力资源管理师试题及答案
- 2025年03月安乡县人力资源和社会保障局开发县本级公益性岗位笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年高压电工考试题库:高压电器设备原理与电力系统运行试题
- 微创介入诊断治疗管理制度
- 新质生产力促进老年人公共体育服务高质量发展研究
- 大学生学业个人规划
- 软件产品售后服务及维护流程指南
- T-ZNZ 248-2024 红黄壤贫瘠耕地快速培肥技术规范
- 2024-2025一年级下册体育教学计划和教案
- 汽车吊起重吊装方案
- 2024年度安徽省高校教师资格证之高等教育学题库附答案(典型题)
- 《建筑施工安全检查标准》JGJ59-2019
- 2024义务教育《英语课程标准》(2022版)
- 世界水日中国水周主题班会课件
评论
0/150
提交评论