




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、AppliedStatisticsforBusiness,DrxxxAssociateProfessorSchoolofEconomicsandManagementxxxx,AppliedBusinessStatistics,7thed.byKenBlack,Chapter3DescriptiveStatistics,LearningObjectives,Distinguishbetweenmeasuresofcentraltendency,measuresofvariability,measuresofshape,andmeasuresofassociation.Understandthem
2、eaningsofmean,median,mode,quartile,percentile,andrange.Computemean,median,mode,percentile,quartile,range,variance,standarddeviation,andmeanabsolutedeviationonungroupeddata.Differentiatebetweensampleandpopulationvarianceandstandarddeviation.,LearningObjectives-Continued,Understandthemeaningofstandard
3、deviationasitisappliedbyusingtheempiricalruleandChebyshevstheorem(切比雪夫定理).Computethemean,median,standarddeviation,andvarianceongroupeddata.Understandboxandwhiskerplots(箱线图,或者盒须图),skewness,andkurtosis.Computeacoefficientofcorrelationandinterpretit.,MeasuresofCentralTendency:UngroupedData,Measuresofce
4、ntraltendencyyieldinformationabout“particularplacesorlocationsinagroupofnumbers.”CommonMeasuresofLocationModeMedianMeanPercentilesQuartiles,Mode-themostfrequentlyoccurringvalueinadatasetApplicabletoalllevelsofdatameasurement(nominal,ordinal,interval,andratio)Canbeusedtodeterminewhatcategoriesoccurmo
5、stfrequentlySometimes,nomodeexists(noduplicates)BimodalInatieforthemostfrequentlyoccurringvalue,twomodesarelistedMultimodal-Datasetsthatcontainmorethantwomodes,Mode,Median,Median-middlevalueinanorderedarrayofnumbers.Halfthedataareaboveit,halfthedataarebelowitMathematically,itsthe(n+1)/2thorderedobse
6、rvationForanarraywithanoddnumberofterms,themedianisthemiddlenumbern=11=(n+1)/2th=12/2th=6thorderedobservationForanarraywithanevennumberoftermsthemedianistheaverageofthemiddletwonumbersn=10=(n+1)/2th=11/2th=5.5th=averageof5thand6thorderedobservation,ArithmeticMean,MeanistheaverageofagroupofnumbersApp
7、licableforintervalandratiodataNotapplicablefornominalorordinaldataAffectedbyeachvalueinthedataset,includingextremevaluesComputedbysummingallvaluesinthedatasetanddividingthesumbythenumberofvaluesinthedataset,ThenumberofU.S.carsinservicebytopcarrentalcompaniesinarecentyearaccordingtoAutoRentalNewsfoll
8、ows.Computethemode,themedian,andthemean.,DemonstrationProblem3.1,DemonstrationProblem3.1,SolutionsMode:9,000(twocompanieswith9,000carsinservice)Median:With13differentcompaniesinthisgroup,N=13.Themedianislocatedatthe(13+1)/2=7thposition.Becausethedataarealreadyordered,medianisthe7thterm,whichis20,000
9、.Mean:=x/N=(1,791,000/13)=137,769.23,Percentiles,Percentile-measuresofcentraltendencythatdivideagroupofdatainto100partsAtleastn%ofthedatalieatorbelowthenthpercentile,andatmost(100-n)%ofthedatalieabovethenthpercentileExample:90thpercentileindicatesthatat90%ofthedataareequaltoorlessthanit,and10%ofthed
10、atalieaboveit,CalculatingPercentiles,Tocalculatethepthpercentile,OrderthedataCalculatei=N(p/100)DeterminethepercentileIfiisawholenumber,thenusetheaverageoftheithand(i+1)thorderedobservationOtherwise,roundiuptothenexthighestwholenumber,Quartiles,Quartile-measuresofcentraltendencythatdivideagroupofdat
11、aintofoursubgroupsQ1:25%ofthedatasetisbelowthefirstquartileQ2:50%ofthedatasetisbelowthesecondquartileQ3:75%ofthedatasetisbelowthethirdquartile,Forthecarsinservicedata,n=13,soQ1:i=13(25/100)=3.25,sousethe4thorderedobservationQ1=9,000Q3:i=13(75/100)=9.75,sousethe10thorderedobservationQ3=204,000,Quarti
12、lesforDemonstrationProblem3.1,WhichMeasureDoIUse?,Whichmeasureofcentraltendencyismostappropriate?Ingeneral,themeanispreferred,sinceithasnicemathematicalproperties(inparticular,seechapter7)Themedianandquartiles,areresistanttooutliersConsiderthefollowingthreedatasets1,2,3(median=2,mean=2)1,2,6(median=
13、2,mean=3)1,2,30(median=2,mean=11)Allhavemedian=2,butthemeanissensitivetotheoutliersIngeneral,ifthereareoutliers,themedianispreferredtothemean,BoxandWhiskerPlot,WhyUseaBoxandWhiskerPlot?Boxandwhiskerplotsareveryeffectiveandeasytoread.Theysummarizedatafrommultiplesourcesanddisplaytheresultsinasinglegr
14、aph.Boxandwhiskerplotsallowforcomparisonofdatafromdifferentcategoriesforeasier,moreeffectivedecision-making.,Aboxandwhiskerplotisdevelopedfromfivestatistics.MinimumvaluethesmallestvalueinthedatasetSecondquartilethevaluebelowwhichthelower25%ofthedataarecontainedMedianvaluethemiddlenumberinarangeofnum
15、bersThirdquartilethevalueabovewhichtheupper25%ofthedataarecontainedMaximumvaluethelargestvalueinthedatasetSometypesarecalledboxandwhiskerplotswithoutliers.,MeasuresofVariability-toolsthatdescribethespreadorthedispersionofasetofdata.Providesmoremeaningfulinformationwhenusedwithmeasuresofcentraltenden
16、cyincomparisontoothergroups,MeasuresofVariability:UngroupedData,CommonMeasuresofVariabilityRangeInter-quartileRangeMeanAbsoluteDeviationVarianceandStandardDeviationCoefficientofVariation,MeasuresofSpreadorDispersion:UngroupedData,Range,ThedifferencebetweenthelargestandthesmallestvaluesinasetofdataAd
17、vantageeasytocomputeDisadvantageisaffectedbyextremevalues,InterquartileRange,InterquartileRange-rangeofvaluesbetweenthefirstandthirdquartilesRangeofthe“middlehalf”;middle50%Usefulwhenresearchersareinterestedinthemiddle50%,andnottheextremesExample:Forthecarsinservicedata,theIQRis204,0009,000=195,000,
18、Deviationsfromthemean,UsefulforintervalorratioleveldataAnexaminationofdeviationfromthemeancanrevealinformationaboutthevariabilityofthedataDeviationsareusedmostlyasatooltocomputeothermeasuresofvariabilityHowever,thesumofdeviationsfromthearithmeticmeanisalwayszero:Sum(X-)=0Therearetwowaystosolvethisco
19、nundrum,MeanAbsoluteDeviation(MAD),Onesolutionistotaketheabsolutevalueofeachdeviationaroundthemean.ThisiscalledtheMeanAbsoluteDeviationNotethatwhiletheMADisintuitivelysimple,itisrarelyusedinpractice,PopulationVariance,AnothersolutionistotaketheSumofSquaredDeviations(SSD)aboutthemeanThepopulationvari
20、anceistheaverageofthesquareddeviationsaboutthearithmeticmeanforasetofnumbers.Thepopulationvarianceisdenotedby/sigma/.,PopulationStandardDeviation,Thepopulationstandarddeviationisameasureofthespreadofadistribution.Asymmetricdistributioniscompletelydescribedbyitscenteratthemeananditsspreaddefinedbymul
21、tiplesofitsstandarddeviation.Thestandarddeviationisthesquarerootofthevariance.,WhatsthemeaningofStd.deviation?,EmpiricalruleItsusedtostatetheapproximatepercentageofvaluesthatliewithinagivennumberofstandarddeviationsfromthemeanofasetofdataifthedataarenormallydistributed.,*Empiricalrule,*Basedontheass
22、umptionthatthedataareapproximatelynormallydistributed.,ChebyshevvTheorem,Unlikeempiricalrule,Chebyshevstheoremappliestoalldistributionsregardlessoftheirshapeandthuscanbeusedwheneverthedatadistributionshapeisunknownorisnonnormal.,ChebyshevsTheoremWithinkstandarddeviationsfromthemean,k,lieatleastpropo
23、rtionofthevalues.Assumptionk1,SampleVariance,SampleVariance-averageofthesquareddeviationsfromthearithmeticmeanSampleVariancedenotedbys2,SampleStandardDeviation,SamplestandarddeviationisthesquarerootofthesamplevarianceSameunitsasoriginaldata,Theeffectivenessofdistrictattorneyscanbemeasuredbyseveralva
24、riables,includingthenumberofconvictionspermonth,thenumberofcaseshandledpermonth,andthetotalnumberofyearsofconvictionpermonth.Aresearcherusesasampleoffivedistrictattorneysinacityanddeterminesthetotalnumberofyearsofconvictionthateachattorneywonagainstdefendantsduringthepastmonth,asreportedinthefirstco
25、lumninthefollowingtabulations.Computethemeanabsolutedeviation,thevariance,andthestandarddeviationforthesefigures.,DemonstrationProblem3.6,DemonstrationProblem3.6,SolutionTheresearchercomputesthemeanabsolutedeviation,thevariance,andthestandarddeviationforthesedatainthefollowingmanner.,ZScores,Zscorer
26、epresentsthenumberofStdDevavalue(x)isaboveorbelowthemeanofasetofnumbersZscoreallowstranslationofavaluesrawdistancefromthemeanintounitsofstddevZ=(x-)/,CoefficientofVariation(CV)measuresthevolatilityofavalue(perhapsastockportfolio),relativetoitsmean.Itstheratioofthestandarddeviationtothemean,expressed
27、asapercentageUsefulwhencomparingStdDevcomputedfromdatawithdifferentmeansMeasurementofrelativedispersion,CoefficientofVariation,CoefficientofVariation,Considertwodifferentpopulations,Since15.8611.90,thefirstpopulationismorevariable,relativetoitsmean,thanthesecondpopulation,IntervalFrequency(f)Midpoin
28、t(M)f*M20-under3062515030-under40183563040-under50114549550-under60115560560-under7036519570-under8017575502150,CalculationofGroupedMean,Sometimesdataarealreadygrouped,andyouareinterestedincalculatingsummarystatistics,CumulativeClassIntervalFrequencyFrequency20-under306630-under40182440-under5011355
29、0-under60114660-under7034970-under80150N=50,MedianofGroupedData-Example,ModeofGroupedData,ClassIntervalFrequency20-under30630-under401840-under501150-under601160-under70370-under801,MidpointofthemodalclassModalclasshasthegreatestfrequency,VarianceandStandardDeviationofGroupedData,PopulationVariancea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 港口库场业务试题及答案
- 药剂职业技能测评试题及答案
- 母猪护理标准化流程考试题及答案
- 深入理解育婴师考试的职业标准试题及答案
- 系统规划与管理师考试成功经验分享试题及答案
- 大学营养学试题及答案
- 社保基金笔试题目及答案
- 破解公共营养师考试的冲突与解决方案探讨试题及答案
- 激光技术工程师职业生涯发展路径试题及答案
- 药学与医学之间的联系试题及答案
- 埃博拉病毒简介
- 新版《金融科技概论》考试复习题库(浓缩500题)
- 电力工程项目建设工期定额
- 监控系统维保专题方案及报价
- 房地产广告围挡施工投标文件范本
- 生育服务证办理承诺书空白模板
- 主播人设打造
- 英语人教新起点(一起)五年级下册-海尼曼分级阅读G2《The Hug》教学设计
- 大庆油田第五采油厂杏四聚联合站工程转油放水站二期工程施工组织设计
- 智慧景区视频监控系统设计方案
- 中小学生守则ppt课件(18页PPT)
评论
0/150
提交评论