机械原理小论文_第1页
机械原理小论文_第2页
机械原理小论文_第3页
机械原理小论文_第4页
机械原理小论文_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档机械原理综合训练(二) 题目:齿轮的研究 班级:机自13-2班姓名:刘松学号:1307010213教师:席本强2015年 6 月 4 日-齿轮的研究摘要轮缘上有齿能连续啮合传递运动和动力的机械元件。齿轮是能互相啮合的有齿的机械零件,齿轮在传动中的应用很早就出现了。19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,随着生产的发展,齿轮运转的平稳性受到重视。关键词:齿轮AbstractThe rim have teeth can continuous mesh transfer movement and power of mechanical components.G

2、ear is to be able to mesh each other toothed machine parts, gear appeared early in the application of transmission.The end of the 19th century, generating the principle of gear cutting method and using the principle of gear cutting, there appeared, special machine tools and cutting tools with the de

3、velopment of production, the gear operation stability. Keywords:gear目录摘要-1 1、齿轮的功能和结构-32、齿轮的发展史-53、齿轮的优缺点-64、齿轮的发展方向-75、齿轮的应用性-86、参考文献- 1、齿轮的功能和结构(1)齿轮的功能齿轮的作用是能将一根轴的转动传递给另一根轴,也可以实现减速、增速、变向和换向等动作(2)齿轮的结构 结构分类:一般有轮齿、齿槽、端面、法面、齿顶圆、齿根圆、基圆、分度圆。轮齿简称齿,是齿轮上 每一个用于啮合的凸起部分,这些凸起部分一般呈辐射状排列,配对齿轮上的轮齿互相接触,可使齿轮持续啮合运

4、转。齿槽是齿轮上两相邻轮齿之间的空间;端面是圆柱齿轮或圆柱蜗杆上 ,垂直于齿轮或蜗杆轴线的平面。端面是齿轮两端的平面。法面指的是垂直于轮齿齿线的平面。齿顶圆是指齿顶端所在的圆。齿根圆是指槽底所在的圆。基圆形成渐开线的发生线作纯滚动的圆。分度圆是在端面内计算齿轮几何尺寸的基准圆。主要参数齿数Z闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振螺旋伞齿轮动,以齿数多一些为好,小齿轮的齿数可取为z1=2040。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不宜选用过多的齿数,一般可取z1=1720。螺旋角 0为左旋; 0为右旋齿距pn=ptcos(下标n和t分别表

5、示法向和端面的标记)模数模数是指相邻两轮齿同侧齿廓间的齿距p与圆周率的比值(m=p/),以毫米为单位。模数是模数制轮齿的一个最基本参数,直齿、斜齿和圆锥齿齿轮的模数皆可参考标准模数系列表(GB/T 1357-1987)。mn=mtcosm=p/ 齿轮的分度圆是设计、计算齿轮各部分尺寸的基准,而齿轮分度圆的周长=d=z p模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。压力角 rb=rcos=1/2mzcos在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿

6、轮的压力角一般为20”。在某些场合也有采用=14.5 、15 、22.50及25等情况。分度圆直径d=m*z中心距a=1/2*m(z1+z2)正确啮合条件m1=m2,1=2,1=2为使齿轮免于根切,对于=20o的标准直尺圆柱齿轮,应取z117。Z2=uz1。齿顶高系数和顶隙系数h*a 、C*两齿轮啮合时,总是一个齿轮的齿顶进入另一个齿轮的齿根,为了防止热膨胀顶死和具有储成润滑油的空间,要求齿根高大于齿顶高。为 此引入了齿顶高系数和顶隙系数。正常齿:h*a =1; C*=0.25 短齿:h*a =0.8; C*=0.32、齿轮的发展史在西方,公元前300年古希腊哲学家亚里士多德在机械问题中,就阐

7、述了用青铜或铸铁齿轮传递旋转运动的问题。希出土的古希腊齿轮装置出土的古希腊齿轮装置腊著名学者亚里士多德和阿基米德都研究过齿轮,希腊有名的发明家古蒂西比奥斯在圆板工作台边缘上均匀1 地插上销子,使它与销轮啮合,他把这种机构应用到刻漏上。这约是公元前150年的事。在公元前100年,亚历山人的发明家赫伦发明了里程计,在里程计中使用了齿轮。公元1世纪时,罗马的建筑家毕多毕斯制作的水车式制粉机上也使用了齿轮传动装置。到14世纪,开始在钟表上使用齿轮。东汉初年(公元 1世纪)已有人字齿轮。三国时期出现的指南车和记里鼓车已采用齿轮传动系统。晋代杜预发明的水转连磨就是通过齿轮将水轮的动力传递给石磨的。史书中关

8、于齿轮传动系统的最早记载,是对唐代一行、梁令瓒于 725年制造的水运浑仪的描述。北宋时制造的水运仪象台(见中国古代计时器)运用了复杂的齿轮系统。明代茅元仪著武备志(成书于1621年)记载了一种齿轮齿条传动装置战国末期铁质青铜齿轮战国末期铁质青铜齿轮。1956年发掘的河北安午汲古城遗址中,发现了铁制棘齿轮,轮直径约80毫米,虽已残缺,但铁质较好,经研究,确认为是战国末期(公元前3世纪)到西汉(公元前206公元24年)期间的制品。1954年在山西省永济县蘖家崖出土了青铜棘齿轮。参考同坑出土器物,可断定为秦代(公元前221前206)或西汉初年遗物,轮40齿,直径约25毫米。关于棘齿轮的用途,迄今未发

9、现文字记载,推测可能用于制动,以防止轮轴倒转。1953年陕西省长安县红庆村出土了一对青铜人字齿轮。根据墓结构和墓葬物品情况分析,可认定这对齿轮出于东汉初年。两轮都为24齿,直径约15毫米。衡阳等地也发现过同样的人字齿轮。早在1694年,法国学者PHILIPPE DE LA HIRE首先提出渐开线可作为齿形曲线。1733年,法国人M.CAMUS提出轮齿接触点的公法线必须通过中心连线上的节点。一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是CAMUS定理。它考虑了两齿武备志中齿轮传动结构图武备志中齿轮传动结构

10、图面的啮合状态;明确建立了现代关于接触点轨迹的概念。1765年,瑞士的LEULER提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。后来,SAVARY进一步完成这一方法,成为EU-LET-SAVARY方程。对渐开线齿形应用作出贡献的是ROTEFT WULLS,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。1873年,德国工程师HOPPE提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具备较完备的手段后,渐开线齿形更显示出巨

11、大的优越性。切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位齿轮。1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。1907年,英国人FRANK HUMPHRIS最早发表了圆弧齿形。1926年,瑞土人ERUEST 汉初青铜人字齿轮汉初青铜人字齿轮WILDHABER取得法面圆弧齿形斜齿轮的专利权。1955年,苏联的MLNOVIKOV完成了圆弧齿形齿轮的实用研究并获得列宁勋

12、章。1970年,英国ROLHROYCE公司工程师RMSTUDER取得了双圆弧齿轮的美国专利。这种齿轮现已日益为人们所重视,在生产中发挥了显著效益。齿轮是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。现代齿轮技术已达到:齿轮模数0.004100毫米;齿轮直径由1毫米150米;传递功率可达上十万千瓦;转速可达几十万转/分;最高的圆周速度达300米/秒。随着生产的发展,齿轮运转的平稳性受到重视。1674年丹麦天文学家罗默首次提出用外摆线作齿廓曲线,以得到运转平稳的齿轮。18世纪工业革命时期,齿轮技术得到高速发展,人们对齿轮进行了大量的研究。1733年法国数学家卡米发表了齿廓

13、啮合基本定律;1765年瑞士数学家欧拉建议采用渐开线作齿廓曲线。19世纪出现的滚齿机和插齿机,解决了大量生产高精度齿轮的问题。1900年,普福特为滚齿机装上差动装置,能在滚齿机上加工出斜齿轮,从此滚齿机滚切齿轮得到普及,展成法加工齿轮占了压倒优势,渐开线齿轮成为应用最广的齿轮。1899年,拉舍最先实施了变位齿轮的方案。变位齿轮不仅能避免轮齿根切,还可以凑配中心距和提高齿轮的承载能力。1923年美国怀尔德哈伯最先提出圆弧齿廓的齿轮,1955年苏诺维科夫对圆弧齿轮进行了深入的研究,圆弧齿轮遂得以应用于生产。这种齿轮的承载能力和效率都较高,但尚不及渐开线齿轮那样易于制造,还有待进一步改进。 3、齿轮

14、的优缺点A.优点:工作可靠,使用寿命长;瞬时传动比为常数;传动比效率高;机构紧凑;功率和速度适用范围广等。B.缺点:齿轮制造需用专用机床和设备,成本较高;精度低时,振动和噪声较大;不宜用于轴间距离大的传动等。4、齿轮的发展方向 国际上,动力传动齿轮装置正沿着小型化、高速化、标准化方向发展特殊齿轮的应用、行星齿轮装置的发展、低振动、低噪声齿轮装置的研制是齿轮设计方面的一些特点为达到齿轮装置小型化目的,可以提高现有渐开线齿轮的承载推力。各国普遍采用硬齿面技术,提高硬度以缩小装置的尺寸;也可应用以圆弧齿轮为代表的特殊齿形。英法合作研制的舰载直升飞机主传动系统采用圆弧齿轮后,使减速器高度大为降低。随着

15、船舶动力由中速柴油机代替的趋势,在大型船上采用大功率行星齿轮装置确有成效;现在冶金、矿山、水泥一轧机等大型传动装置中,行星齿轮以其体积小、同轴性好、效率高的优点而应用愈来愈多。由于机械设备向大型化发展,齿轮的工作参数提高了。如高速齿轮的传递功率为1000-30000kw。齿轮圆周速度为20200ms(1200-12000rmin),设计工作寿命为5X104-10X104 小时;轧钢机齿轮的圆周速度已由每秒几米提高到20m/s,甚至3050m/s。传递扭炬达l00200t.m, 要求使用寿命在2030年以上。这些齿轮的精度等级一般在38级。并对平稳性与噪声有较高的要求。对于高速齿轮(包括透平机械

16、齿轮)。在圆周速度超过100ms时由于运转中的热效应要求在设计始对产生的热变形进行修正,使齿轮在工作时达到一个正常的啮合状态。特别对于高速重载齿轮。更要加以考虑。其次,对于低速重载齿轮如轧钢机齿轮,由于采用硬齿面齿轮后,其齿面负荷系数增加而引起的整个齿轮装置系统的弹性变形变得突出了,所以有时也要对反映到齿面的弹性变形进行修正。这种对齿轮轮齿修形的技术是目前大功率、高速、重载齿轮制造的一个重要趋势。在齿轮制造技术方面重点是进行硬齿面加工,尤其是大型硬齿面齿轮的切切与热处理工艺的发展,如超硬切齿、滚内齿、成形磨齿、大模数齿轮珩齿、弹性砂轮抛光、轮齿修形、以及深层沙碳等新工艺正在生产上不断地试验与应

17、用。齿轮制造工艺的发展很大程度上表现在精度等级与生产效率的提高自七十年代以来各种齿轮的制造精度,普遍提高一级左右有的甚至23级一般低速齿轮精度由过去的89级提高到78级。机床齿轮由68级提高到46级轧机齿轮由78级提高到56级。对于模数不大的中小规格齿轮,由于高性能滚齿机的开发,加上刀具材料的改善,滚齿效率有了显著提高。采用多头滚刀,在大进给且条件下,可达到的切削速度为90m/s。如用超硬滚刀加工模数3左右的调质钢齿轮,切削过度可达200ms提高插齿效率,要受到插齿机刀具往复运动机构的限制。最近在开发采用刀具卸载,使用静压轴承,增强刀架与立柱刚性等新结构后,效率有明显提高。新型插齿机的冲程数可

18、达到2000次分。由于硬齿面齿轮广泛应用,以及高速、高性能要求的齿轮日益增多,因此要求磨齿加工,在效率和质量上都要提高。一般来说。展成法磨齿用得较普遍而成形法磨齿则少MAAG磨齿法,虽然磨齿精度高,但效率低。不适合重磨削。而Niles与Hofler公司生产的单砂轮磨齿机刚性好精度可靠,适合于大进给量加工,效率高。近年来,为提高效率也在改进磨制方法,如减少磨削次数,压缩展成长度,缩短尾削冲程;为此MAAG公司提出的K一磨削法与Niles公司提出的双面磨削法都提高了实际磨削效率。目前对于成批磨削中、小用数齿轮,倾向于采用蜗杆砂轮磨齿机,磨削效率很高,对于磨削大模数齿轮,除可应用能重磨削的单砂轮磨齿

19、外,采用成形图削方法。也是一种高效磨削的有效途径。此外,还有一些新的工艺方法,如美国格利森公司研制的GTRAC No765型轨道式切齿机,每小时能加工88个齿轮,比普通滚齿机提高34倍。双刀盘高效切齿工艺切削速度可达137m/s,粗、精加工一个m=1.5mm、外径2443mm、齿宽19mm的斜齿轮,只需6秒钟,其效率为该齿的510倍美国密芝根工具公司的多刀头插齿,效率比普通插齿提高510倍,汽车行业齿轮冷成型工艺,冷挤、热轧等少无切削工艺也不断获得新的发展。关于齿轮材料与热处理随着便自面齿轮的发展,也逐渐受到人们的重视。齿轮用钢的发展趋势;一是含Cr,Ni,Mo的低合金钢;二是硼钢;三是碳氮共

20、渗用钢;四是易切削钢。由于我国缺乏Ni、Cr,常用20CrMnTi渗碳钢或用含硼加稀土钢。重型机械常用18CrMnNiMo渗碳钢或中碳合金钢。机床行业食用40Cr,38CrMoA等钢以及高速齿轮用25Cr2MoV钢进行氮化。齿轮热处理工艺一般有碳渗(或碳氮共渗)、氮化、感应淬火、调质等四类当前总的趋势是提高齿面硬度,渗碳淬火齿轮的承载能力可比调质齿轮提高23倍,表111出用不同加工方法制造的齿轮其中心距、重量、安全系数的对比。渗碳淬火齿轮可以获得高的表面硬度、耐磨性、韧性和抗冲击性能,能提高的抗点蚀、抗疲劳性能。心部和渗碳层的性能主要取决于选用何种热处理工艺,如将齿轮调质处理到360HB时,其

21、齿面接触疲劳极限应力ph-750N/mm2,如表面淬火到HRC56-60-时,pJ1500N/mm2,如表面渗碳到同样硬度时yi.-1200N/mm2,对于调质齿轮由于齿轮刀具材料的改进已将小齿轮的齿面硬度提高到360HB,大齿轮提高到280HB以上。齿轮渗碳大多数采用气体渗碳法。常用丙烷气发生炉生成气体,送入渗碳炉进行,也有用液注式渗碳炉,使有机液体在炉内气化进行渗碳这种方法占地少,原料与处理费用低:炉子不稳定工作时间也短,有利于节约能源和成本最近发展的真空离渗碳法,尤其对于深层渗碳要求的齿轮,可进一步缩短时间,减少变形。齿轮渗碳大多数采用气体渗碳法。常用丙烷气发生炉生成气体,送入渗碳炉进行

22、,也有用液注式渗碳炉,使有机液体在炉内气化进行渗碳这种方法占地少,原料与处理费用低:炉子不稳定工作时间也短,有利于节约能源和成本最近发展的真空离渗碳法,尤其对于深层渗碳要求的齿轮,可进一步缩短时间,减少变形。电子计算机在各工业领域的应用;进了各项技术的发展同样,在齿轮的设计、计算方面进展也很快,人们利用计算机能对各种可能的设计方实进行计算、分析和比较,并通过优选,取得较为理想的结果例如在分析齿面接触区,求啮合线与相对速度夹角中,对弹流润滑计算以及几何参数计算等方面编制了程序。还有,在齿轮修形计算与齿轮承载能力计算方面都编有程序我国已编制了GB3480-83渐开线圆柱齿轮承载能力计算标准的程序软

23、件,供生产应用在齿轮加工方面,可以利用计算机控制整个切齿过程使制造质量稳定可靠目前,国内在研究应用微机对弧齿锥齿轮的切齿调整卡进行计算,可对加工偏差及时调整使齿面接触达到比较理想的位置,并大大提高了工效。此外,根据数控原理,应用微机对环面蜗杆螺旋齿面进行抛物线修形,已经应用于生产。虽然这方面的工作在国内还处于起步阶段,但它对提高齿轮制造质量和技术水平具有重要意义。5、齿轮的应用性 增大齿根过度圆角的半径,消除该处的加工刀痕,并在齿根处进行表面喷丸强化,可降低齿根处的应力集中,防止或延缓疲劳裂纹的萌生;增大轴及支承的刚性,可以减小齿面上局部受载的程度,使齿面受载较为均匀,可防止发生轮齿局部折断。另外,通过适当的热处理工艺,使轮齿外表面有较高的硬度,而芯部具有足够的韧性,可在一定程度上防止大载冲击而引起的轮齿折断。因此,齿轮类零件常常采用调质处理。但是,调质件的疲劳极限随淬火马氏体量的增多而提高,为此要做到全齿部位截面淬透,保证达到调质齿轮要求的机械性能。此外,齿轮在加工制造过程中,应严格保证工艺要求,尽量避免应力集中。齿面磨损齿面的磨损是不可避免的。无论是多么硬的齿面,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论