




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题21图形的旋转(36题)一、单选题1.(2024·湖北·中考真题)平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为(
)A. B. C. D.2.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A的坐标为,点C的坐标为.以为边作矩形,若将矩形绕点O顺时针旋转,得到矩形,则点的坐标为(
)A. B. C. D.3.(2024·天津·中考真题)如图,中,,将绕点顺时针旋转得到,点的对应点分别为,延长交于点,下列结论一定正确的是(
)A. B.C. D.4.(2024·四川自贡·中考真题)如图,在平面直角坐标系中,,将绕点O逆时针旋转到位置,则点B坐标为(
)
A. B. C. D.5.(2024·江苏无锡·中考真题)如图,在中,,,将绕点逆时针旋转得到.当落在上时,的度数为(
)A. B. C. D.6.(2024·黑龙江大庆·中考真题)如图,在矩形中,,,点M是边的中点,点N是边上任意一点,将线段绕点M顺时针旋转,点N旋转到点,则周长的最小值为(
)A.15 B. C. D.187.(2024·内蒙古赤峰·中考真题)如图,中,,.将绕点A顺时针旋转得到,点与点B是对应点,点与点C是对应点.若点恰好落在BC边上,下列结论:①点B在旋转过程中经过的路径长是;②;③;④.其中正确的结论是()A.①②③④ B.①②③ C.①③④ D.②④8.(2024·四川广元·中考真题)如图,将绕点A顺时针旋转得到,点B,C的对应点分别为点D,E,连接,点D恰好落在线段上,若,,则的长为(
)A. B. C.2 D.9.(2024·重庆·中考真题)如图,在正方形的边上有一点,连接,把绕点逆时针旋转,得到,连接并延长与的延长线交于点.则的值为(
)A. B. C. D.10.(2024·四川内江·中考真题)如图,在平面直角坐标系中,轴,垂足为点,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线上,如此下去,……,若点的坐标为,则点的坐标为(
).A. B. C. D.11.(2024·四川南充·中考真题)如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形中,.下列三个结论:①若,则;②若的面积是正方形面积的3倍,则点F是的三等分点;③将绕点A逆时针旋转得到,则的最大值为.其中正确的结论是(
)
A.①② B.①③ C.②③ D.①②③12.(2024·北京·中考真题)如图,在菱形中,,为对角线的交点.将菱形绕点逆时针旋转得到菱形,两个菱形的公共点为,,,.对八边形给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点到该八边形各顶点的距离都相等;④点到该八边形各边所在直线的距离都相等。上述结论中,所有正确结论的序号是(
)A.①③ B.①④ C.②③ D.②④二、填空题13.(2024·四川雅安·中考真题)如图,在和中,,,将绕点A顺时针旋转一定角度,当时,的度数是.14.(2024·吉林长春·中考真题)一块含角的直角三角板按如图所示的方式摆放,边与直线重合,.现将该三角板绕点顺时针旋转,使点的对应点落在直线上,则点A经过的路径长至少为.(结果保留)15.(2024·黑龙江大兴安岭地·中考真题)如图,在中,,,,,线段绕点旋转,点为的中点,则的最大值是.16.(2024·四川广安·中考真题)如图,直线与轴、轴分别相交于点,,将绕点逆时针方向旋转得到,则点的坐标为.17.(2024·江苏盐城·中考真题)如图,在中,,,点是的中点,连接,将绕点旋转,得到.连接,当时,.18.(2024·四川泸州·中考真题)定义:在平面直角坐标系中,将一个图形先向上平移个单位,再绕原点按逆时针方向旋转角度,这样的图形运动叫做图形的变换.如:点按照变换后得到点的坐标为,则点按照变换后得到点的坐标为.19.(2024·江苏苏州·中考真题)直线与x轴交于点A,将直线绕点A逆时针旋转,得到直线,则直线对应的函数表达式是.20.(2024·山东潍坊·中考真题)如图,在直角坐标系中,等边三角形ABC的顶点的坐标为,点均在轴上.将绕顶点逆时针旋转得到,则点的坐标为.三、解答题21.(2024·山东济宁·中考真题)如图,三个顶点的坐标分别是.(1)将向下平移2个单位长度得,画出平移后的图形,并直接写出点的坐标;(2)将绕点逆时针旋转得.画出旋转后的图形,并求点运动到点所经过的路径长.22.(2024·广东广州·中考真题)如图,中,.(1)尺规作图:作边上的中线(保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线绕点逆时针旋转得到,连接,.求证:四边形是矩形.23.(2024·甘肃兰州·中考真题)综合与实践【问题情境】在数学综合实践课上,同学们以特殊三角形为背景,探究动点运动的几何问题,如图,在中,点M,N分别为,上的动点(不含端点),且.【初步尝试】(1)如图1,当为等边三角形时,小颜发现:将绕点M逆时针旋转得到,连接,则,请思考并证明:【类比探究】(2)小梁尝试改变三角形的形状后进一步探究:如图2,在中,,,于点E,交于点F,将绕点M逆时针旋转得到,连接,.试猜想四边形的形状,并说明理由;【拓展延伸】(3)孙老师提出新的探究方向:如图3,在中,,,连接,,请直接写出的最小值.24.(2024·四川广安·中考真题)如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁;②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.25.(2024·山东烟台·中考真题)在等腰直角中,,,D为直线上任意一点,连接.将线段绕点D按顺时针方向旋转得线段,连接.【尝试发现】(1)如图1,当点D在线段上时,线段与的数量关系为________;【类比探究】(2)当点D在线段的延长线上时,先在图2中补全图形,再探究线段与的数量关系并证明;【联系拓广】(3)若,,请直接写出的值.26.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于y轴对称的,并写出点的坐标;(2)画出绕点A逆时针旋转后得到的,并写出点的坐标;(3)在(2)的条件下,求点B旋转到点的过程中所经过的路径长(结果保留)27.(2024·甘肃临夏·中考真题)根据背景素材,探索解决问题.平面直角坐标系中画一个边长为2的正六边形背景素材六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.已知条件点与坐标原点重合,点在轴的正半轴上且坐标为操作步骤①分别以点,为圆心,长为半径作弧,两弧交于点;②以点为圆心,长为半径作圆;③以的长为半径,在上顺次截取;④顺次连接,,,,,得到正六边形.问题解决任务一根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)任务二将正六边形绕点顺时针旋转,直接写出此时点所在位置的坐标:______.28.(2024·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系,格点(网格线的交点)A、B,C、D的坐标分别为,,,.
(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,,,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线平分,写出点E的坐标.29.(2024·北京·中考真题)已知,点,分别在射线,上,将线段绕点顺时针旋转得到线段,过点作的垂线交射线于点.
(1)如图1,当点在射线上时,求证:是的中点;(2)如图2,当点在内部时,作,交射线于点,用等式表示线段与的数量关系,并证明。30.(2024·山东·中考真题)一副三角板分别记作和,其中,,,.作于点,于点,如图1.(1)求证:;(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点与点重合记为,点与点重合,将图2中的绕按顺时针方向旋转后,延长交直线于点.①当时,如图3,求证:四边形为正方形;②当时,写出线段,,的数量关系,并证明;当时,直接写出线段,,的数量关系.31.(2024·四川眉山·中考真题)综合与实践问题提出:在一次综合与实践活动中,某数学兴趣小组将足够大的直角三角板的一个顶点放在正方形的中心处,并绕点旋转,探究直角三角板与正方形重叠部分的面积变化情况.操作发现:将直角三角板的直角顶点放在点处,在旋转过程中:(1)若正方形边长为4,当一条直角边与对角线重合时,重叠部分的面积为______;当一条直角边与正方形的一边垂直时,重叠部分的面积为______.(2)若正方形的面积为,重叠部分的面积为,在旋转过程中与的关系为______.类比探究:如图1,若等腰直角三角板的直角顶点与点重合,在旋转过程中,两条直角边分别角交正方形两边于,两点,小宇经过多次实验得到结论,请你帮他进行证明.拓展延伸:如图2,若正方形边长为4,将另一个直角三角板中角的顶点与点重合,在旋转过程中,当三角板的直角边交于点,斜边交于点,且时,请求出重叠部分的面积.(参考数据:,,)32.(2024·广西·中考真题)如图1,中,,.的垂直平分线分别交,于点M,O,平分.(1)求证:;(2)如图2,将绕点O逆时针旋转得到,旋转角为.连接,①求面积的最大值及此时旋转角的度数,并说明理由;②当是直角三角形时,请直接写出旋转角的度数.33.(2024·内蒙古通辽·中考真题)数学活动课上,某小组将一个含的三角尺利一个正方形纸板如图1摆放,若,.将三角尺绕点逆时针方向旋转角,观察图形的变化,完成探究活动.【初步探究】如图2,连接,并延长,延长线相交于点交于点.问题1和的数量关系是________,位置关系是_________.【深入探究】应用问题1的结论解决下面的问题.问题2如图3,连接,点是的中点,连接,.求证.【尝试应用】问题3如图4,请直接写出当旋转角从变化到时,点经过路线的长度.34.(2024·广东广州·中考真题)已知抛物线过点和点,直线过点,交线段于点,记的周长为,的周长为,且.(1)求抛物线的对称轴;(2)求的值;(3)直线绕点以每秒的速度顺时针旋转秒后得到直线,当时,直线交抛物线于,两点.①求的值;②设的面积为,若对于任意的,均有成立,求的最大值及此时抛物线的解析式.35.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.【初步感知】(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.【拓展延伸】(3)在纸片绕点旋转过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商洛职业技术学院《航线设计》2023-2024学年第二学期期末试卷
- 南溪县2024-2025学年四年级数学第二学期期末监测试题含解析
- 清远职业技术学院《图文信息处理与再现》2023-2024学年第二学期期末试卷
- 浙江交通职业技术学院《药剂学实验仿真》2023-2024学年第二学期期末试卷
- 山东农业工程学院《生物技术制药双语》2023-2024学年第二学期期末试卷
- 山东省潍坊市临朐县2024-2025学年高考全真模拟考卷物理试题含解析
- 四川省巴中学市恩阳区实验中学2025届初三第二次校模拟考试英语试题含答案
- 吉林省吉林市吉化九中学2025届初三下学期暑假联考化学试题含解析
- 江苏省徐州市邳州市运河中学2025届初三下学期期末教学质量检测试题(一模)数学试题含解析
- 长春工业大学《放射生物学》2023-2024学年第二学期期末试卷
- 2025年山东省东营市广饶县一中中考一模英语试题(原卷版+解析版)
- 工贸行业隐患排查指导手册
- 形势与政策(贵州财经大学)知到智慧树章节答案
- GB/T 36187-2024冷冻鱼糜
- 2023年江苏省五年制专转本英语统考真题(试卷+答案)
- 20S805-1 雨水调蓄设施-钢筋混凝土雨水调蓄池
- GB3469-83《文献类型与文献载体代码》
- 互联网大学生创新创业大赛培训
- 3号钢筋加工场桁吊安装方案
- 部编版(统编)六年级语文下册文学常识及文化常识(共4页)
- 世界500强企业企业文化(企业使命、愿景、核心价值观)集锦
评论
0/150
提交评论