高一数学必修1知识点归纳_第1页
高一数学必修1知识点归纳_第2页
高一数学必修1知识点归纳_第3页
高一数学必修1知识点归纳_第4页
高一数学必修1知识点归纳_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学必修1知识点归纳汇报人:08CONTENTS目录01集合与函数概念02基本初等函数03函数应用与模型建立04空间几何体结构特征05平面解析几何初步06算法初步与框图表示01集合与函数概念PART集合及其表示方法集合定义确定对象的全体称为集合,集合中的每个对象称为元素。集合表示常用大写字母表示集合,小写字母表示元素,如A={a,b,c}。集合元素特性确定性、互异性、无序性。常用数集符号N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集。集合间的基本关系包含关系01若A的所有元素都是B的元素,则称A是B的子集,记作A⊆B。相等关系02若A和B的元素完全相同,则称A与B相等,记作A=B。交集与并集03由A与B的公共元素组成的集合称为A与B的交集,记作A∩B;由A与B所有元素组成的集合称为A与B的并集,记作A∪B。差集与补集04由属于A但不属于B的元素组成的集合称为A与B的差集,记作A-B;在全集U中,A的补集是指U中所有不属于A的元素组成的集合,记作A'。集合的运算满足交换律、结合律和分配律。运算定律德摩根定律集合性质对于任意集合A、B,有(A∪B)'=A'∩B'和(A∩B)'=A'∪B'。空集是任何集合的子集,任何集合都是其自身的子集,集合的并集等于其自身。集合运算及性质函数常用解析式、图像和表格三种形式表示,其中解析式是最常用的表示方法。函数表示定义域、值域和对应关系,其中定义域是函数的基础,对应关系是函数的核心。函数三要素单调性、奇偶性、有界性等,这些性质是函数研究的重要内容。函数性质函数概念与表示法01020302基本初等函数PART指数函数及其性质指数函数图像与性质当a>1时,函数图像在x轴上方且递增;当0<a<1时,函数图像在x轴上方且递减;指数函数恒过点(0,1),且随着x的增大,函数值增长速度越来越快。指数函数运算法则同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;幂的指数再乘,底数相乘指数相加。指数函数定义形如y=a^x(a>0,a≠1)的函数称为指数函数,其定义域为全体实数。030201对数函数及其性质对数函数定义如果a^x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作x=log_aN。其中a为对数底数,N为真数,x为对数值。对数函数图像与性质对数函数图像与其对应的指数函数图像关于直线y=x对称;当a>1时,函数图像在x轴上方且递增;当0<a<1时,函数图像在x轴上方且递减;对数函数恒过点(1,0)。对数函数运算法则对数相加,真数相乘;对数相减,真数相除;对数乘以常数,真数取幂;对数取反,真数取倒数。幂函数定义形如y=x^a(a为常数)的函数称为幂函数。幂函数及其性质幂函数图像与性质当a>0时,函数图像在第一、二象限;当a<0时,函数图像在第一、三象限;幂函数在x=0处无定义,且随着x的增大或减小,函数值增长速度越来越快或越来越慢。幂函数运算性质幂函数相乘,指数相加;幂函数相除,指数相减;幂函数乘方,指数相乘;幂函数开方,指数除以根指数。三角函数定义正弦函数、余弦函数图像都是周期函数,具有周期性、奇偶性等性质;正切函数图像在x=π/2+kπ(k为整数)处有间断点。三角函数图像与性质三角函数基本关系式同角三角函数关系式、诱导公式、和差化积公式、积化和差公式等,这些关系式在三角函数的计算中非常重要。通过单位圆上一点与x轴正半轴形成的角度所对应的边长关系来定义的函数,包括正弦函数、余弦函数、正切函数等。三角函数初步认识03函数应用与模型建立PART函数与方程根的关系函数的零点函数值为0的点,即方程f(x)=0的根。零点存在性定理方程的根与函数图像如果函数在闭区间[a,b]上连续,且f(a)与f(b)异号,则至少存在一个c∈(a,b),使得f(c)=0。方程的根对应函数图像与x轴的交点。将实际问题的关键变量之间的关系抽象为函数关系。实际问题抽象为函数确定函数类型、定义变量、建立函数关系式、确定参数。函数模型的建立步骤利用已知条件,通过代数运算求解函数模型中的参数。函数模型的求解函数模型建立与求解010203函数在工程问题中的应用如结构设计、优化问题等。函数在物理问题中的应用如运动学中的位移、速度、加速度等关系。函数在经济问题中的应用如成本、收益、利润等经济量的关系分析。函数在实际问题中应用三角函数在物理中的应用三角函数在波动现象中的应用描述波动现象,如简谐振动、波动等。三角函数在旋转运动中的应用描述旋转运动中的角度变化、周期性等。三角函数在力学中的应用如力的合成与分解、质点运动轨迹等。04空间几何体结构特征PART由多边形围成的空间几何体,如棱柱、棱锥等。多面体旋转体组合体由一个平面图形绕一条定直线旋转形成的空间几何体,如圆柱、圆锥等。由多个简单几何体组合而成的空间几何体。空间几何体分类及命名规则棱柱具有两个平行且相等的多边形底面,侧面为矩形或平行四边形。棱锥具有一个多边形底面,顶点通过一个公共边与底面相连,侧面为三角形。圆柱由两个平行且相等的圆面组成,侧面为曲面。圆锥由一个圆面和一个顶点相连,侧面为曲面。空间几何体结构特征分析棱柱表面积侧面积+2×底面积棱柱体积棱锥表面积空间几何体表面积和体积计算公式底面积×高侧面积+底面积1/3×底面积×高棱锥体积2×π×半径×高+2×π×半径²圆柱表面积π×半径²×高圆柱体积空间几何体表面积和体积计算公式010203圆锥表面积π×半径×斜高+π×半径²圆锥体积1/3×π×半径²×高空间几何体表面积和体积计算公式平面与平面相交、平面与平面平行。平面与平面点在直线上、点在直线外。点与直线01020304直线在平面内、直线与平面相交、直线与平面平行。直线与平面点在平面内、点在平面外。点与平面空间点、线、面位置关系判断05平面解析几何初步PART平面直角坐标系建立及点的坐标表示坐标系的变换平移、旋转、对称等变换可以简化问题,便于求解。点的坐标表示方法在平面直角坐标系中,一个点可以用一对有序实数表示,即该点分别到两个坐标轴的距离。平面直角坐标系定义在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。一般式Ax+By+C=0、斜截式y=kx+b、两点式等。直线方程的类型代入法、消元法、比较系数法等。直线方程的求解方法斜率表示直线的倾斜程度,两条直线平行时斜率相等,垂直时斜率之积为-1。直线的性质直线方程求解及性质分析(x-a)²+(y-b)²=r²,表示以(a,b)为圆心,r为半径的圆。圆的标准方程x²+y²+Dx+Ey+F=0,通过配方可以转化为标准方程。圆的一般方程圆是到定点的距离等于定长的点的集合,圆的对称性、切线性等性质在解题中有广泛应用。圆的性质圆方程求解及性质分析曲线与方程的关系一次方程Ax+By+C=0所表示的图形是一条直线,是平面解析几何中最简单的曲线。一次曲线与一次方程二次曲线与二次方程二次方程Ax²+Bxy+Cy²+Dx+Ey+F=0所表示的图形包括圆、椭圆、双曲线等,它们具有丰富的几何性质和代数性质。平面解析几何中,曲线与方程是一一对应的,一个方程可以表示一条曲线,一条曲线也可以用一个方程来表示。曲线与方程关系探讨06算法初步与框图表示PART算法是一种解决问题或完成任务的清晰指令集,它是计算机程序设计的基础。算法概念算法概念及特点介绍算法具有明确性、有限性、有效性等特征,能够在一定时间内,通过有限的步骤解决问题。算法特点算法是计算机科学的核心,是程序设计的灵魂,掌握算法才能编写出优秀的程序。算法重要性顺序结构按照顺序依次执行各个步骤,是最基本的程序结构之一。选择结构根据条件选择执行不同的代码块,包括if语句和switch语句等。循环结构重复执行某个代码块,直到满足特定条件,包括for循环、while循环等。顺序结构、选择结构和循环结构描述方法用图形表示算法,可以清晰地描述算法的执行流程,便于理解和交流。流程图包括开始和结束、处理、判断、输入输出、箭头等符号,以及它们之间的连接关系。流程图元素按照算法的逻辑顺序,使用流程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论