沪科版2025年八年级数学下册章节重点梳理 第18章 勾股定理【3大考点8种题型】_第1页
沪科版2025年八年级数学下册章节重点梳理 第18章 勾股定理【3大考点8种题型】_第2页
沪科版2025年八年级数学下册章节重点梳理 第18章 勾股定理【3大考点8种题型】_第3页
沪科版2025年八年级数学下册章节重点梳理 第18章 勾股定理【3大考点8种题型】_第4页
沪科版2025年八年级数学下册章节重点梳理 第18章 勾股定理【3大考点8种题型】_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第18章勾股定理【3大考点8种题型】【沪科版】TOC\o"1-3"\h\u【考点1探索勾股定理】 1【题型1利用勾股定理求线段的长】 1【题型2利用勾股定理求图形的面积】 3【题型3勾股定理的证明】 4【考点2勾股定理的逆定理】 6【题型4利用直角三角形的判定方法判断三角形的形状】 6【题型5勾股定理及直角三角形的判定方法的综合应用】 7【题型6格点中勾股定理的应用】 8【考点3勾股定理的应用】 9【题型7勾股定理在实际生活中的应用】 9【题型8利用勾股定理解决立体图形中的最短路径问题】 11【考点1勾股定理】1.勾股定理文字语言符号语言图示变式应用直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边长分别为,斜边长为,那么.【题型1利用勾股定理求线段的长】【例1】(23-24八年级·安徽铜陵·期末)如图,在荡秋千时,已知绳子OA长5米,荡到最高点D时秋干离地面3米,点B,C分别是点A,D在地面上的投影,若线段BC的长是4米,求秋千的起始位置距离地面的高度(线段AB的长).【变式1-1】(23-24八年级·山东济南·期末)如图,∠C=90°,AB∥CD,AB=5,CD=11,AC=8,点E是BD的中点,则AE的长为.【变式1-2】(23-24八年级·广东深圳·期末)在长方形ABCD中,AB=8,BC=10,E是CD边上一点,连接BE,把△BEC沿BE翻折,点C恰好落在AD边上的F处,延长EF,与∠ABF的平分线交于点M,BM交AD于点N,则NF的长度为()A.22 B.103 C.4 【变式1-3】(23-24八年级·江苏南京·期末)如图,在△ABC中,AD⊥BC,交BC于点D,AB=17,AC=10.(1)若CD=6,则AD=___________,BD=___________;(2)若BC=20,求CD的长.【题型2利用勾股定理求图形的面积】【例2】(23-24八年级·山东聊城·期末)如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,若图1中的直角三角形的长直角边为5,大正方形的面积为29,连接图2中四条线段得到如图3的新图案,求图3中阴影部分的面积【变式2-1】(23-24八年级·广东汕头·期末)如图,△ABC中,AC=BC,CD平分∠ACB,交AB于点D,延长BC至点E,使CE=BC,连接AE.(1)求证:CD∥(2)连接DE,若AC=5,AB=6,求△DCE的面积.【变式2-2】(23-24八年级·广东江门·期末)如图,正方形纸片ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为ℎ1、ℎ2、ℎ3(ℎ1>0,ℎ2>0【变式2-3】(23-24八年级·山东威海·期末)如图,在长方形ABCD中,∠B=∠D=90°,AB=DC=6,BC=AD=8.分别沿AE,AF折叠长方形,使点B,D分别落在AC边上的G,H处.连接EH,FG,求FG和△GEH的面积.【题型3勾股定理的证明】【例3】(23-24八年级·四川成都·期末)如图,已知在△ABC中,AD⊥BC于点D,AD=BD,E是AD上的一点,且DC=DE,连接BE,CE,并延长BE交AC于点F.(1)求证:BE=AC;(2)若BA=BC=13,求△CDE的周长;(3)在Rt△BDE中,设DE=a,BD=b,BE=c,请借助本题提供的图形及相关信息,设EF=x,利用△ABC的面积证明:a【变式3-1】(23-24八年级·江西赣州·阶段练习)如图1,我们称该图案为“赵爽弦图”.“赵爽弦图”由四个全等的直角三角形围成一个大正方形,中空的部分是一个小正方形,其中直角三角形的两直角边长为a,b(b>a>0),斜边长为c.(1)请利用图1验证勾股定理.知识应用(2)在图1中,若c=15,b=12,求小正方形的面积.(3)小明按图2的方式把边长为3cm和2【变式3-2】(15-16八年级·江苏泰州·期中)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2证明:∵S又S四边形∴S∴1请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°,求证:a2【变式3-3】(23-24八年级·河南驻马店·期末)阅读下列材料,完成任务我们知道,平方差公式a2

任务:(1)图1是由2个边长分别为a,b的正方形和2个全等的长方形所拼成的大正方形,根据图中的信息,可以写出所表示的代数恒等式为______;(2)图2所示的图形是由四个直角边长分别为a,b,斜边长为c的全等的直角三角形和一个正方形的拼成的大正方形,请你用面积法推导恒等式的方法,证明勾股定理.(3)在Rt△ABC中,a,b为直角边长,c为斜边长,且a2−b2【考点2勾股定理的逆定理】1.勾股定理的逆定理与勾股定理的联系与区别勾股定理勾股定理的逆定理条件在中,.在中,.结论区别勾股定理以“一个三角形是直角三角形”为条件,进而得到数量关系“”,即由“形”到“数”勾股定理的逆定理以“一个三角形的三边满足”为条件,进而得到“这个三角形是直角三角形”,即由“数”到“形”.联系两者都与三角形的三边有关系【延伸】设三角形的三边长分别为(为最长边的长).如果,那么这个三角形是直角三角形;如果,那么这个三角形是钝角三角形;如果,那么这个三角形是锐角三角形.【题型4利用直角三角形的判定方法判断三角形的形状】【例4】(23-24八年级·陕西西安·期末)在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件:①∠A=∠C−∠B;②a+ba−b③a=32,b=4④∠A:∠B:∠C=3:4:5,其中可以判定△ABC是直角三角形的有个.【变式4-1】(23-24八年级·陕西西安·期中)已知a、b、c是三角形的三边长,如果满足a−62+b−8A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形 D.直角三角形【变式4-2】(23-24八年级·全国·课后作业)三角形的三边长分别是2n+1,2n2+2n,2n2【变式4-3】(23-24八年级·山东青岛·期末)若实数y的立方根为2,且实数x,y,z满足x−6+y+(1)求x+y−2z的值;(2)若x,y,z是△ABC的三边,试判断三角形的形状.【题型5勾股定理及直角三角形的判定方法的综合应用】【例5】(23-24八年级·四川成都·期末)如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A、点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=α,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,延长EC到点H,连接BH2+CH2=2AE2,连接AH与BE交于F,试探究BE与FH的关系.【变式5-1】(23-24八年级·贵州贵阳·期末)如图,四边形ABCD中,∠B=90°,AB=9 m,BC=12 m,CD=8 m,AD=17A.108 m2 B.114 m2【变式5-2】(23-24八年级·河北衡水·期末)如图,在△ABC中,D是边BC的中点,E是边AC的中点,连接AD,BE.(1)若CD=8,CE=6,AB=20,求证:∠C=90°;(2)若∠C=90°,AD=13,AE=6,求△ABC的面积.【变式5-3】(23-24八年级·广东河源·期末)(1)如图1,在△ABC中,AC=13,AD=5,CD=12,BC=20,求△ABC的面积;(2)如图2,在△EFG中,EF=13,EG=20,FG=11,求△EFG的面积.【题型6格点中勾股定理的应用】【例6】(23-24八年级·山东淄博·期末)如图,在正方形网格中,点A,B,C,D均为格点,则∠CBD+∠ABC=.【变式6-1】(23-24八年级·福建南平·期末)如图,小正方形组成的3×2网格中,每个小正方形的顶点称为格点.点A,B,C,D,M,N均在格点上,其中点A,B,C,D能与点M,N构成一个直角三角形的是(

)A.点A B.点B C.点C D.点D【变式6-2】(23-24八年级·辽宁葫芦岛·期末)如图,在单位为1的正方形网格中,有三条线段a,b,c(线段端点都在格点上),以这三条线段为边能否组成一个直角三角形?答:.(填“能”或“不能”.)【变式6-3】(23-24八年级·广西玉林·期末)如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出(A.2个 B.4个 C.6个 D.7个【考点3勾股定理的应用】【题型7勾股定理在实际生活中的应用】【例7】(23-24八年级·河北承德·期末)如图,小明家在一条东西走向的公路MN北侧200米的点A处,小红家位于小明家北500米(AC=500米)、东1200米(BC=1200米)点B处.(1)求小明家离小红家的距离AB;(2)现要在公路MN上的点P处建一个快递驿站,使PA+PB最小,请确定点P的位置,并求PA+PB的最小值.【变式7-1】(12-13八年级·湖北黄冈·期末)我国大部分东部地区属于亚热带季风气候,夏季炎热多雨.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【变式7-2】(23-24八年级·四川资阳·期末)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=(1)求这两棵树的水平距离CF;(2)求树AB的高度.【变式7-3】(23-24八年级·山东济南·期末)如图,A中学位于南北向公路l的一侧,门前有两条长度均为100米的小路通往公路l,与公路l交于B,C两点,且B,C相距120米.

(1)现在想修一条从公路l到A中学的新路AD(点D在l上),使得学生从公路l走到学校路程最短,应该如何修路(请在图中画出)?新路AD长度是多少?(2)为了行车安全,在公路l上的点B和点E处设置了一组区间测速装置,其中点E在点B的北侧,且距A中学170米.一辆车经过BE区间用时5秒,若公路l限速为60km/h(约16.7m/s),请判断该车是否超速,并说明理由.【题型8利用勾股定理解决立体图形中的最短路径问题】【方法总结】立体图形表面的最短路线的一般解题步骤:【例8】(23-24八年级·四川达州·期末)如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和BA.481dm B.20dm C.25dm【变式8-1】(23-24八年级·广西南宁·期末)如图,透明圆柱形容器(容器厚度忽略不计)的高为13cm,底面周长为12cm,在容器内壁离容器底部7cm的A处有一饭粒,此时一只蚂蚁正好在容器外壁且距离容器上沿2cm的点B【变式8-2】(23-24八年级·山东威海·期末)如图,教室墙面ADEF与地面ABCD垂直,点P在墙面上,若PA=17米,AB=2米,点P到AF的距离是4米,一只蚂蚁要从点P爬到点B,它的最短行程是(

A.3 B.4 C.5 D.6【变式8-3】(23-24八年级·山东日照·期末)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.

第18章勾股定理【3大考点8种题型】【沪科版】TOC\o"1-3"\h\u【考点1探索勾股定理】 1【题型1利用勾股定理求线段的长】 1【题型2利用勾股定理求图形的面积】 5【题型3勾股定理的证明】 10【考点2勾股定理的逆定理】 15【题型4利用直角三角形的判定方法判断三角形的形状】 15【题型5勾股定理及直角三角形的判定方法的综合应用】 19【题型6格点中勾股定理的应用】 23【考点3勾股定理的应用】 27【题型7勾股定理在实际生活中的应用】 27【题型8利用勾股定理解决立体图形中的最短路径问题】 32【考点1勾股定理】1.勾股定理文字语言符号语言图示变式应用直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边长分别为,斜边长为,那么.【题型1利用勾股定理求线段的长】【例1】(23-24八年级·安徽铜陵·期末)如图,在荡秋千时,已知绳子OA长5米,荡到最高点D时秋干离地面3米,点B,C分别是点A,D在地面上的投影,若线段BC的长是4米,求秋千的起始位置距离地面的高度(线段AB的长).【答案】秋千的起始位置距离地面的高度为1米【分析】本题考查了勾股定理的应用.作DE⊥OB于点E,在Rt△ODE中,利用勾股定理求得OE【详解】解:作DE⊥OB于点E,∵OB⊥BC,CD⊥BC,∴四边形BCDE是矩形,∴DE=BC=4米,OD=OA=5米,CD=BE=3米,在Rt△ODE中,OE=∴AE=OA−OE=2米,∴AB=BE−AE=1米,答:秋千的起始位置距离地面的高度为1米.【变式1-1】(23-24八年级·山东济南·期末)如图,∠C=90°,AB∥CD,AB=5,CD=11,AC=8,点E是BD的中点,则AE的长为.【答案】5【分析】本题考查全等三角形的判定和性质,勾股定理,延长AE交DC于点F,然后证明△ABE≌△FDE,得到AE=EF,DF=AB=5,然后利用勾股定理得到AF=10,然后解题即可.【详解】解:延长AE交DC于点F,∵点E是BD的中点,∴BE=ED,又∵AB∥CD,∴∠B=∠D,∠BAE=∠DFE,∴△ABE≌△FDE,∴AE=EF,DF=AB=5,∴CF=DC−DF=11−5=6,又∵∠C=90°,∴AF=AC∴AE=EF=故答案为:5.【变式1-2】(23-24八年级·广东深圳·期末)在长方形ABCD中,AB=8,BC=10,E是CD边上一点,连接BE,把△BEC沿BE翻折,点C恰好落在AD边上的F处,延长EF,与∠ABF的平分线交于点M,BM交AD于点N,则NF的长度为()A.22 B.103 C.4 【答案】B【分析】本题考查折叠的性质,角平分线的性质,过点N作NG⊥BF,可得AN=NG,设AN=NG=x,勾股定理求出AF的长,表示出FN的长,等积法列出方程求出x的值即可.【详解】解:过点N作NG⊥BF,∵长方形ABCD,∴∠A=90°,∵BM平分∠ABF,∴NA=NG,由翻折可得BC=BF=10,由勾股定理,得:AF=B设AN=NG=x,∴FN=AF−AN=6−x,∵S△BNF∴86−x解得:x=8∴FN=6−8故选:B.【变式1-3】(23-24八年级·江苏南京·期末)如图,在△ABC中,AD⊥BC,交BC于点D,AB=17,AC=10.(1)若CD=6,则AD=___________,BD=___________;(2)若BC=20,求CD的长.【答案】(1)8,15;(2)CD=211【分析】本题考查了勾股定理的应用,熟练掌握勾股定理是解此题的关键.(1)由勾股定理计算即可得出答案;(2)设CD=x,则BD=20−x,由勾股定理得出102【详解】(1)解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=17,∴AD=A∴BD=A故答案为:8,15;(2)解:设CD=x,则BD=20−x,∵AC2−C∴AC∴102解得x=211∴CD=211【题型2利用勾股定理求图形的面积】【例2】(23-24八年级·山东聊城·期末)如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,若图1中的直角三角形的长直角边为5,大正方形的面积为29,连接图2中四条线段得到如图3的新图案,求图3中阴影部分的面积【答案】21【分析】本题主要考查了勾股定理中赵爽弦图模型.利用勾股定理,求出AB=CD=2,从而得到S△ADC【详解】解:如图,根据题意得:BC=5,AC2=29,∠ABC=90°∴AB=A∴CD=2,∴S△ADC∴阴影部分的面积为29−4×2=21.故答案为:21【变式2-1】(23-24八年级·广东汕头·期末)如图,△ABC中,AC=BC,CD平分∠ACB,交AB于点D,延长BC至点E,使CE=BC,连接AE.(1)求证:CD∥(2)连接DE,若AC=5,AB=6,求△DCE的面积.【答案】(1)见解析(2)6【分析】本题考查等腰三角形的判定和性质,勾股定理,平行线的判定,掌握等腰三角形的判定和性质是解题的关键.(1)根据等边对等角得到∠CAE=∠CEA,由外角的性质得到∠ACB=2∠CEA,再根据角平分线的定义得到∠ACB=2∠BCD,既可以证得∠CEA=∠BCD,进而得到结论;(2)根据三线合一得到CD⊥AB,DB=12AB,然后根据勾股定理得到CD=4【详解】(1)证明:∵AC=BC,∴AC=CE,∴∠CAE=∠CEA,∵∠ACB=∠CAE+∠CEA=2∠CEA,∵CD平分∠ACB,∴∠ACB=2∠BCD,∴∠CEA=∠BCD,∴CD∥AE;(2)解:∵AC=BC,CD平分∴CD⊥AB,DB=12∴CD=B又∵CE=BC,∴S△DCE【变式2-2】(23-24八年级·广东江门·期末)如图,正方形纸片ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为ℎ1、ℎ2、ℎ3(ℎ1>0,ℎ2>0【答案】74【分析】本题考查了全等三角形的判定和性质,正方形的性质,勾股定理,添加恰当辅助线构造全等三角形是解题的关键.由“AAS”可证△ADN≌△BAH,可得BH=AN=5,AH=DN=5+2=7,由勾股定理可求AD【详解】解:如图,过点B作l1作BH⊥l1于H,过点D作DN⊥∴∠AHB=∠AND=90°=∠BAD,∴∠BAH+∠ABH=90°=∠BAH+∠DAN,∴∠DAN=∠ABH,∴△ADN≌△BAH(AAS∴BH=AN=5,AH=DN=5+2=7,∴AD∴正方形ABCD的面积S等于74,故答案为:74.【变式2-3】(23-24八年级·山东威海·期末)如图,在长方形ABCD中,∠B=∠D=90°,AB=DC=6,BC=AD=8.分别沿AE,AF折叠长方形,使点B,D分别落在AC边上的G,H处.连接EH,FG,求FG和△GEH的面积.【答案】FG的长为103,△GEH【分析】本题考查了矩形的折叠问题,勾股定理,垂直平分线的性质和判定,以及等面积法求线段长,利用勾股定理得到AC=10,再结合折叠性质得到GH=CH=2,FH⊥AC,推出FH垂直平分CG,利用等面积法求得HF=DF=83,进而得到FG=FC=DC−DF,再结合勾股定理求出【详解】解:∵∠B=∠D=90°,AB=DC=6,BC=AD=8.∴AC=AB2由折叠得GE=BE,AG=AB=6,AH=AD=8,HF=DF,∠AGE=∠B=90°,∠AHF=∠D=90°,∴CG=AC−AG=10−6=4,CH=AC−AH=10−8=2,∠CGE=90°,∴GH=CG−CH=4−2=2,∴GH=CH,∵FH⊥AC,FD⊥AD,∴S△ACD∴12∴HF=DF=8∵FH垂直平分CG,∴FG=FC=DC−DF=6−8∵GE2+C∴GE解得GE=3,∴S△GEH∴FG的长为103,△GEH【题型3勾股定理的证明】【例3】(23-24八年级·四川成都·期末)如图,已知在△ABC中,AD⊥BC于点D,AD=BD,E是AD上的一点,且DC=DE,连接BE,CE,并延长BE交AC于点F.(1)求证:BE=AC;(2)若BA=BC=13,求△CDE的周长;(3)在Rt△BDE中,设DE=a,BD=b,BE=c,请借助本题提供的图形及相关信息,设EF=x,利用△ABC的面积证明:a【答案】(1)详见解析(2)13(3)详见解析【分析】(1)证明△ACD≌△BED,根据全等三角形的性质即可得证;(2)证明∠1=∠2,再证明BF⊥AC.可得EA=EC.结合DA=DB,再进一步的利用周长公式计算即可;(3)先表示S△CDE=12DC×DE=12a2【详解】(1)证明:∵AD⊥BC,∴∠BDE=∠ADC=90°.∵在△BDE和△ADCBD=AD∠BDE=∠ADC∴△BDE≌∴BE=AC.(2)解:∵△BDE≌∴∠1=∠2.(全等三角形的对应角相等)∵∠ACD+∠2=90°,∴∠ACD+∠1=90°,即∠BFC=90°.∴BF⊥AC.∵BA=BC,∴BF是AC的中垂线.∴EA=EC.∵DA=DB,∴△CDE的周长=DE+DC+CE=BD+DC=BC=13.(3)解:∵△CDE和△ADB均为等腰直角三角形,∴S△CDE=1∵BF⊥AC,∴S△AEC=1∵S△ABC∴12即12∴a2【点睛】本题考查了全等三角形的性质与判定,等角的余角相等,勾股定理的证明方法,掌握全等三角形的性质与判定是解题的关键.【变式3-1】(23-24八年级·江西赣州·阶段练习)如图1,我们称该图案为“赵爽弦图”.“赵爽弦图”由四个全等的直角三角形围成一个大正方形,中空的部分是一个小正方形,其中直角三角形的两直角边长为a,b(b>a>0),斜边长为c.(1)请利用图1验证勾股定理.知识应用(2)在图1中,若c=15,b=12,求小正方形的面积.(3)小明按图2的方式把边长为3cm和2【答案】(1)见解析;(2)9;(3)13【分析】本题主要考查了勾股定理的几何证明,利用勾股定理进行计算,算术平方根的应用,解题的关键是数形结合.(1)根据大正方形的面积的两种表示方法=四个直角三角形的面积+小正方形的面积,列式证明即可;(2)先根据勾股定理求出a=9,然后根据正方形的面积公式求解即可;(3)根据两个图形的面积相等,求出图3中大正方形的面积,然后再求出边长即可.【详解】(1)证明:∵大正方形的面积=四个直角三角形的面积+小正方形的面积,∴==b∴a(2)由勾股定理得a=c∴小正方形的面积S=(12−9)(3)大正方形的面积为:32大正方形的边长:13cm【变式3-2】(15-16八年级·江苏泰州·期中)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2证明:∵S又S四边形∴S∴1请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°,求证:a2【答案】见解析【分析】本题考查了勾股定理的证明.连接BD,过点B作DE边上的高BF,则BF=b−a,仿照已知材料中的方法,利用五边形面积的不同表示方法解答即可.【详解】证明:连接BD,过点B作DE边上的高BF,则BF=b−a.∵S又∵S五边形∴12∴12∴12∴b2∴a2【变式3-3】(23-24八年级·河南驻马店·期末)阅读下列材料,完成任务我们知道,平方差公式a2

任务:(1)图1是由2个边长分别为a,b的正方形和2个全等的长方形所拼成的大正方形,根据图中的信息,可以写出所表示的代数恒等式为______;(2)图2所示的图形是由四个直角边长分别为a,b,斜边长为c的全等的直角三角形和一个正方形的拼成的大正方形,请你用面积法推导恒等式的方法,证明勾股定理.(3)在Rt△ABC中,a,b为直角边长,c为斜边长,且a2−b2【答案】(1)(a+b)(2)见解析(3)c=10【分析】(1)根据大正方形的面积等于两个小正方形的面积加上两个矩形的面积和计算即可.(2)根据正方形的面积不变性,三角形的面积公式计算证明即可.(3)根据勾股定理,公式变形计算即可.【详解】(1)解:根据正方形的面积等于边长的平方,得到正方形的面积为a+b2结合图形,得到正方形的面积还等于a2故a+b2故答案为:a+b2(2)解:∵a+b2∴a2∴a2(3)解:∵a2∴a+b∵a−b=2,∴a+b=14∴a=8,b=6,∵a2∴c2∴c=10,c=−10(舍去).【点睛】本题考查了数学公式的几何表示,完全平方公式的几何意义,勾股定理的证明,计算应用,熟练掌握公式和勾股定理是解题的关键.【考点2勾股定理的逆定理】1.勾股定理的逆定理与勾股定理的联系与区别勾股定理勾股定理的逆定理条件在中,.在中,.结论区别勾股定理以“一个三角形是直角三角形”为条件,进而得到数量关系“”,即由“形”到“数”勾股定理的逆定理以“一个三角形的三边满足”为条件,进而得到“这个三角形是直角三角形”,即由“数”到“形”.联系两者都与三角形的三边有关系【延伸】设三角形的三边长分别为(为最长边的长).如果,那么这个三角形是直角三角形;如果,那么这个三角形是钝角三角形;如果,那么这个三角形是锐角三角形.【题型4利用直角三角形的判定方法判断三角形的形状】【例4】(23-24八年级·陕西西安·期末)在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件:①∠A=∠C−∠B;②a+ba−b③a=32,b=4④∠A:∠B:∠C=3:4:5,其中可以判定△ABC是直角三角形的有个.【答案】2【分析】本题主要考查了直角三角形的判定,对于①④,求出各内角的度数,判断即可;对于②③,根据勾股定理逆定理判断即可.【详解】∵∠A=∠C−∠B,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,则①正确;∵(a−b)(a+b)=c∴a2即a2∴△ABC是直角三角形,则②正确;∵a2=92=81∴a2∴△ABC不是直角三角形.则③不正确;设∠A=3x,∠B=4x,∠C=5x,根据三角形内角和定理,得3x+4x+5x=180°,解得x=15°,∴3x=45°,4x=60°,5x=75°,∴△ABC不是直角三角形.则④不正确.正确的有2个.故答案为:2.【变式4-1】(23-24八年级·陕西西安·期中)已知a、b、c是三角形的三边长,如果满足a−62+b−8A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形 D.直角三角形【答案】D【分析】本题主要考查了非负数的性质与勾股定理的逆定理,首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形,熟练掌握知识点的应用是解题的关键.【详解】解:∵a−62∴a−6=0,b−8=0,c−10=0,∴a=6,b=8,c=10,∴a2∴三角形的形状是直角三角形,故选:D.【变式4-2】(23-24八年级·全国·课后作业)三角形的三边长分别是2n+1,2n2+2n,2n2【答案】直角三角形【分析】根据勾股定理的逆定理即可得.【详解】(2=(2=4=即(2n+1)2则此三角形为直角三角形又∵2n则此直角三角形不是等腰直角三角形故答案为:直角三角形.【点睛】本题考查了勾股定理的逆定理,掌握并灵活运用逆定理是解题关键.【变式4-3】(23-24八年级·山东青岛·期末)若实数y的立方根为2,且实数x,y,z满足x−6+y+(1)求x+y−2z的值;(2)若x,y,z是△ABC的三边,试判断三角形的形状.【答案】(1)−6(2)△ABC是直角三角形.【分析】(1)根据立方根的定义和非负数的性质进行解答;(2)根据等腰三角形的定义解答即可.【详解】(1)解:∵实数y的立方根是2,∴y=8;∵x−6+y+∴x−6+∴x−6=0,8−z+2=0,∴x=6,∴x+y−2z=6+8−20=−6;(2)解:∵x2+y∴x2∴△ABC是直角三角形.【点睛】此题考查非负数的性质,立方根的定义,解题的关键是根据立方根的定义和非负数的性质得出x,y,z的值.【题型5勾股定理及直角三角形的判定方法的综合应用】【例5】(23-24八年级·四川成都·期末)如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A、点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=α,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,延长EC到点H,连接BH2+CH2=2AE2,连接AH与BE交于F,试探究BE与FH的关系.【答案】(1)45(2)∠AEC-∠AED=45°,证明见解析(3)BE⊥FH,BE=2FH.【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°-2α,可得∠CAE=90°-2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)由条件得出∠BHC=90°,进而得出BH=EH,再结合AB=AE,得出AH垂直平分BE,进一步得出结论.【详解】(1)解:∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°,∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC-∠AED=45°,故答案为:45;(2)猜想:∠AEC-∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°-2α,∴∠CAE=∠BAE-∠BAC=90°-2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC-∠AED=45°;(3)解:BE⊥FH,BE=2FH.理由如下:∵AB=AC,∠BAC=90°,∴BC2=AB2+AC2=2AB2,∵AE=AB,BH2+CH2=2AE2,∴BH2+CH2=2AB2=BC2,∴∠BHC=90°,由(2)得:∠DEC=45°,∴∠HBE=45°,∴BH=EH,∵AB=AE,∴AH垂直平分BE,∴BE⊥FH,BE=2FH.【点睛】本题考查了等腰三角形的判定和性质,勾股定理及其逆定理,线段垂直平分线判定等知识,解决问题的关键熟练掌握等腰三角形和勾股定理逆定理等相关知识.【变式5-1】(23-24八年级·贵州贵阳·期末)如图,四边形ABCD中,∠B=90°,AB=9 m,BC=12 m,CD=8 m,AD=17A.108 m2 B.114 m2【答案】B【分析】本题考查勾股定理及其逆定理,连接AC,勾股定理求出AC的长,勾股定理逆定理得到△ACD为直角三角形,再利用分割法求出四边形的面积即可.【详解】解:连接AC,∵∠B=90°,AB=9∴AC=9∵CD∴△ACD为直角三角形,∴四边形ABCD的面积=S故选B.【变式5-2】(23-24八年级·河北衡水·期末)如图,在△ABC中,D是边BC的中点,E是边AC的中点,连接AD,BE.(1)若CD=8,CE=6,AB=20,求证:∠C=90°;(2)若∠C=90°,AD=13,AE=6,求△ABC的面积.【答案】(1)见解析(2)60【分析】(1)根据中点的定义和勾股定理的逆定理即可证明;(2)根据中点的定义求出AC,根据勾股定理求出CD,再求出BC,然后利用三角形面积公式列式计算即可求解.【详解】(1)证明:∵D是边BC的中点,E是边AC的中点,CD=8,CE=6,∴AC=2CE=12,BC=2CD=16,∵AB=20,∴AB∴Δ∴∠C=90°;(2)∵E是边AC的中点,AE=6,∴AC=2AE=12.在RtΔACD中,∵∠C=90°,AC=12,AD=13,∴CD=A∴BC=2CD=10,∴ΔABC的面积【点睛】本题考查了勾股定理及其逆定理,线段中点的定义,三角形的面积,熟练掌握勾股定理和勾股定理的逆定理是解本题的关键.【变式5-3】(23-24八年级·广东河源·期末)(1)如图1,在△ABC中,AC=13,AD=5,CD=12,BC=20,求△ABC的面积;(2)如图2,在△EFG中,EF=13,EG=20,FG=11,求△EFG的面积.【答案】(1)126;(2)66【分析】(1)根据勾股定理求出CD2+AD2=169,AC2=169,求出C(2)过点E作EM⊥FG,交GF的延长线于点M.设FM=x,则GM=11+x,根据勾股定理得出EM2=EF2−FM【详解】解:(1)∵AC=13,AD=5,CD=12,∴CD2+A∴CD∴∠ADC=90°,∴∠BDC=90由勾股定理得BD=B∴AB=AD+BD=5+16=21,∴S△ABC(2)如图,过点E作EM⊥FG,交GF的延长线于点M.设FM=x,则GM=11+x,∵在Rt△FEM和Rt△GEM中,由勾股定理得EM∴EF∴132解得x=5,即FM=5,∴EM=13∴S△EFG【点睛】本题考查了勾股定理,勾股定理的逆定理和三角形的面积等知识点,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.【题型6格点中勾股定理的应用】【例6】(23-24八年级·山东淄博·期末)如图,在正方形网格中,点A,B,C,D均为格点,则∠CBD+∠ABC=.【答案】45°【分析】取格点E,连接BE、AE.利用勾股定理得到BE=BD,根据等腰三角形的性质得出∠CBE=∠CBD.由勾股定理的逆定理以及AB=AE证明△ABE是等腰直角三角形,进而求出∠CBD+∠ABC=45°.【详解】解:如图,取格点E,连接BE、AE由勾股定理得,BE2=12+52=26,BD2=12+52=26,∴BE=BD,∵BC⊥ED,∴∠CBE=∠CBD∵AB2=22+32=13,AE2=22+32=13,∴AB2+AE2=BE2,AB=AE,∴△ABE是等腰直角三角形,∴∠ABE=∠CBE+∠ABC=45°,∴∠CBD+∠ABC=45°故答案为:45°.【点睛】此题主要考查了勾股定理以及逆定理,熟练掌握勾股定理及逆定理是解题的关键.【变式6-1】(23-24八年级·福建南平·期末)如图,小正方形组成的3×2网格中,每个小正方形的顶点称为格点.点A,B,C,D,M,N均在格点上,其中点A,B,C,D能与点M,N构成一个直角三角形的是(

)A.点A B.点B C.点C D.点D【答案】D【分析】此题考查勾股定理及其逆定理,证明△DMN直角三角形,即可得到答案.【详解】解:连接MN,DN,MD,MN∴MN∴△DMN直角三角形,∴点M符合题意,用同样的方法证明其它点不符合要求,故选:D【变式6-2】(23-24八年级·辽宁葫芦岛·期末)如图,在单位为1的正方形网格中,有三条线段a,b,c(线段端点都在格点上),以这三条线段为边能否组成一个直角三角形?答:.(填“能”或“不能”.)【答案】能【分析】根据勾股定理的逆定理判断即可.【详解】由题意得abc∴a∴能构成直角三角形故答案为:能.【点睛】本题考查勾股定理以及逆定理,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-3】(23-24八年级·广西玉林·期末)如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出(A.2个 B.4个 C.6个 D.7个【答案】C【分析】此题主要考查了勾股定理逆定理,正确进行讨论,把每种情况考虑全,是解决本题的关键,当AB是斜边时有四个Rt△ABC,当AB是直角边时有2个Rt【详解】解:当AB是斜边时,则第三个顶点所在的位置有:C、D、E、H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选C.【考点3勾股定理的应用】【题型7勾股定理在实际生活中的应用】【例7】(23-24八年级·河北承德·期末)如图,小明家在一条东西走向的公路MN北侧200米的点A处,小红家位于小明家北500米(AC=500米)、东1200米(BC=1200米)点B处.(1)求小明家离小红家的距离AB;(2)现要在公路MN上的点P处建一个快递驿站,使PA+PB最小,请确定点P的位置,并求PA+PB的最小值.【答案】(1)AB=1300米;(2)见解析,1500米【分析】(1)如图,连接AB,根据勾股定理即可得到结论;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,根据勾股定理即可得到结论.【详解】解:(1)如图,连接AB,由题意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.【点睛】本题考查轴对称-最短问题,勾股定理,题的关键是学会利用轴对称解决最短问题.【变式7-1】(12-13八年级·湖北黄冈·期末)我国大部分东部地区属于亚热带季风气候,夏季炎热多雨.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【答案】(1)A城会受台风影响(2)6小时【分析】本题考查勾股定理的应用,构造直角三角形是解题的关键.(1)根据垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200,则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG【详解】(1)解:由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则因为160<200,所以A城会受台风影响;(2)解:设BF上点D,G,使AD=AG=200千米,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,∴CD=GC,在Rt△ADC中,DA=200千米,AC=160有勾股定理得,CD=A则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6小时【变式7-2】(23-24八年级·四川资阳·期末)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=(1)求这两棵树的水平距离CF;(2)求树AB的高度.【答案】(1)3m(2)6m【分析】(1)根据平行的性质,证得AF=CF,根据勾股定理即可求得.(2)在Rt△CEF中,根据勾股定理即可解得.【详解】(1)由题可知MP∥CF,∴∠ACF=∠NMP=45°,∴AF=CF

在Rt△ACF中,CF∴2CF∴AF=CF=3(m).即这两棵树的水平距离为3m.(2)在Rt△CEF中,CE∴CE=3∴AB=AE+CE=5+1=6(m).即树AB的高度为6m.【点睛】此题考查了勾股定理,解题的关键是熟悉勾股定理的实际应用.【变式7-3】(23-24八年级·山东济南·期末)如图,A中学位于南北向公路l的一侧,门前有两条长度均为100米的小路通往公路l,与公路l交于B,C两点,且B,C相距120米.

(1)现在想修一条从公路l到A中学的新路AD(点D在l上),使得学生从公路l走到学校路程最短,应该如何修路(请在图中画出)?新路AD长度是多少?(2)为了行车安全,在公路l上的点B和点E处设置了一组区间测速装置,其中点E在点B的北侧,且距A中学170米.一辆车经过BE区间用时5秒,若公路l限速为60km/h(约16.7m/s),请判断该车是否超速,并说明理由.【答案】(1)见解析,80米(2)超速,见解析【分析】(1)根据垂线段最短可画出图形,根据三线合一可求出BD=60,然后利用勾股定理可求出新路AD长度;(2)先根据勾股定理求出DE的长,再求出BE的长,然后计算出速度判断即可.【详解】(1)过点A作AD⊥l,交l于点D.

∵AB=AC,∴BD=12BC=在Rt△ABD中,∠ADB=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论