【IPPR】2025英国人工智能创新方向报告基于新数据库的洞察与改革路线图_第1页
【IPPR】2025英国人工智能创新方向报告基于新数据库的洞察与改革路线图_第2页
【IPPR】2025英国人工智能创新方向报告基于新数据库的洞察与改革路线图_第3页
【IPPR】2025英国人工智能创新方向报告基于新数据库的洞察与改革路线图_第4页
【IPPR】2025英国人工智能创新方向报告基于新数据库的洞察与改革路线图_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

InstituteforPublicPolicyResearch

THEDIRECTION

OFAIINNOVATIONINTHEUK

INSIGHTSFROMANEWDATABASEANDAROADMAPFORREFORM

CarstenJungandBhargavSrinivasa

Desikan

April2025

ABOUTIPPR

IPPR,theInstituteforPublicPolicyResearch,isanindependentcharity

workingtowardsafairer,greener,andmoreprosperoussociety.Weare

researchers,communicators,andpolicyexpertscreatingtangibleprogressivechange,andturningboldideasintocommonsenserealities.WorkingacrosstheUK,IPPR,IPPRNorth,andIPPRScotlandaredeeplyconnectedtothe

peopleofournationsandregions,andtheissuesourcommunitiesface.

Wehavehelpedshapenationalconversationsandprogressivepolicychangeformorethan30years.Frommakingtheearlycasefortheminimumwageandtacklingregionalinequality,toproposingawindfalltaxonenergy

companies,IPPR’sresearchandpolicyworkhasputforwardpracticalsolutionsforthecrisesfacingsociety.

IPPR

4thfloor,

8Storey'sGateLondon

SW1P3AY

E:info@

Registeredcharityno:800065(EnglandandWales),SC046557(Scotland)

ThispaperwasfirstpublishedinApril2025.©IPPR2025

Thecontentsandopinionsexpressedinthispaperarethoseoftheauthorsonly.

Theprogressivepolicythinktank

CONTENTS

Summary 5

1.Introduction:AIdeploymentneedsnotjustacceleration,butdirection 8

Measuringthedirectionofinnovationandidentifying

‘deploymentgaps’ 9

2.Keyfindingsfromournewdatabase 10

AIbusinessesfocusmainlyongeneralprocessimprovements

ratherthanspecificproblemsolving 10

AIadoptionisfocussedontheknowledgeeconomyand

processimprovement 11

Theuseofoff-the-shelfmodels:AIadoptionintheUKcould

toalargeextentinvolvebusinessprocessinnovationrather

thanAIsoftwareinnovationperse 14

3.Deepdives:WhatarethevaluepropositionsofAIcompanies

andwherearethegaps? 17

Casestudy1:significantlyimprovingpublichealthwillrequire

morefocusonprevention 17

Casestudy2:TransportAIinnovationhasabigfocuson

autonomousvehiclesandlogisticsbutnotonimprovingaccess 20

4.Policyrecommendationsformission-drivenAIinnovation 23

Recommendation1:Thegovernmentneedstobettertrack

AIdeploymenttoinformpolicy 24

Recommendation2:Breakmissionsdowntospecific

problemstatements 25

Recommendation3:Aligninnovationpolicyclearlywith

missionstocreate‘technologypush’ 26

Recommendation4:Usesubsidies,procurementand

preferentialfinancingforAIadoptionandmarket

shaping,creating‘demandpull’ 30

References 34

Appendix:Methodology 37

IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform3

4IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform

ABOUTTHEAUTHORS

CarstenJungisheadofAIatIPPR.

BhargavSrinivasaDesikanwasaseniorresearchfellowatIPPRatthetimeofwriting.

ACKNOWLEDGEMENTS

WewouldliketothankAnnieWilliamsonandStephenFrostfortheirin-depth

adviceonthehealthandtransportsectorcasestudy.Wewouldalsoliketothank

AlexandraLowe,StuartThompson,KieranNeild-Ali,CharlesMcIvor,SamFreedman,KirNuthi,PeterHyman,Harry-QuilterPinner,GeorgeDibb,SimoneGasperin,RainerKattel,SebKrierandAndrewBennettforveryhelpfulconversationsandcomments.WewouldalsoliketothankSylviaMonkhouse,RichardMacleanandAbiHynesandforcopyeditingandproducingthereporttothehigheststandard.

Download

ThisdocumentisavailabletodownloadasafreePDFandinotherformatsat:

/articles/the-direction-of-ai-innovation-in-the-uk

Citation

Ifyouareusingthisdocumentinyourownwriting,ourpreferredcitationis:

JungCandSrinivasaDesikanB(2025)ThedirectionofAIinnovationintheUK:Insightsfromanewdatabaseandaroadmapforreform,IPPR.

/articles/the-direction-of-ai-innovation-in-the-uk

Permissiontoshare

Thisdocumentispublishedunderacreativecommonslicence:Attribution-NonCommercial-NoDerivs2.0UK

/licenses/by-nc-nd/2.0/uk/Forcommercialuse,pleasecontactinfo@

IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform5

SUMMARY

Recentdevelopmentsinartificialintelligence(AI)couldhavetransformative

effectsontheeconomy.Withthelatestmodelsachievingtopscoresinscientificanddiagnosticreasoningtests,theycouldusherinaneweraofgrowth.InJungandSrinivasaDesikan(2024)weestimatedthatexistingmodels,ifwidely

implementedinthemediumterm,couldhelpraisegrowthby13percent.AdvancedAIcouldalsohelptacklebigsocietalchallengesrangingfromillhealthtoenvironmentaldegradation.

ButrealisingthebenefitsofAIrequiresmorethanjustacceleratingdeployment.PolicyneedstoalsoprovidestrategicincentivesforaligningAIdeploymentwiththegovernment’smissions.Inthispaper,weanalysetheAIinnovationlandscapeintheUKtodeterminewhichtypeofAIdeploymentisandisnotcurrentlytakingplace.Weidentify‘AIdeploymentgaps’andmakerecommendationsforhowtheycanbefilled.

Todoso,webuiltafirst-of-its-kind(toourknowledge)databaseof3,256AIfirmsintheUK.IthasdetailedinformationonthetypeofAIapplications,sectorfocus,andspecificproblemstatementsthatAIapplicationsaresolving.Fromthis,we

developedmeasuresforthecurrentdirectionofAIinnovationandconsiderwhereAIdeploymentgapscouldlie.

RegardingthedirectionofUKAIinnovation,wefindthefollowing.

•TheUKisseeingrapidandfar-reachingAIinnovation.Wefindactivity

acrossallsectorsoftheeconomy,andacrossbusinesslines.ThisshowsinnovationdynamismintheUKandsuggeststhefirstwaveofdeploymentcouldsoonbefeltbyemployeesandconsumers.

•15percentofAIvaluepropositionsfocusonsolvingspecificproblemsinspecificsectors,while85percentarefocussedonmoregeneral

processimprovements.Thissuggestsmoregradualratherthanrapidtransformativeimpacts.

•70percentofAIfirmsareactiveinknowledgeeconomysectors.In

otherwords,adoptionisonlyslowlyreachingbeyondknowledgeintensive

industries–afirstsignofpotentialAIdeploymentgaps.Only15percentofapplicationsarefocussingonproductandR&Dinnovation–iegeneratingnewvaluepropositions–withtheremainderfocussedonmakingexistingbusinessprocessesmoreefficient.

•Wefindindicativeevidencethatmanybusinessesoftenuseoff-the-shelfmodels(proprietaryandopensource,suchasthosebyOpenAI,Anthropic,DeepSeekandMeta)ratherthantrainingtheirownin-housemodels.ValueaddfromAIadoptioncouldtherefore,toalargeextent,involvebusiness

processinnovation–AIdeploymentinotherwords–ratherthandevelopingnewAImodels.

ToillustratewhattypesofproblemsAIdeploymentisaimedat–andwhatthevaluepropositionsare–welookmorecloselyattwoAIinnovationareas:healthandtransportation.Wefindthefollowing.

•PublichealthisaburgeoningfieldofAIinnovation.HealthisthesecondlargestsectorforAIactivity–withmostspecialisedinnovationfocussedondiagnosis,drugimprovementandtreatmentimprovement.However,wehighlightthattobemoremission-aligned–asiswidelyrecognisedinthepublichealthspace–

6IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform

therewillneedtoanincreasedfocusonprevention.However,wefindthatonly12percentofvaluepropositionsareinthepreventionspace.Moreinnovationactivityinthisareacouldhelpdeliverthegovernment’smission,andpolicy

canhelpgenerateit.

•AIinnovationinthetransportsectorhasabigfocusinautonomousvehiclesandoperationalefficiencies.Butfortechnologicalinnovationtobefully

mission-alignedthereisaneedtoincreaseaccesstotransportwhilealsoreducingcarbonemissions.Moreinnovationwouldbeneededintransformingthewaywetravel,includingbypersonalisingthetransportoffer,increasingon-demandtransitandencouragingmulti-modaltravel.Wefindthat,inthetransportsector,only9percentofAIinnovationsareinthisspace.

Wearguethat,tofillthesegaps,AIinnovationpolicyneedstobegenuinely

mission-driven,andcloselyalignedwiththegovernment’svariousobjectives.Wemakefourrecommendations.

•First,AImakesitmoreimportantforgovernmentstobreakdowntheirmissionsintomorespecificunderlyingtargetsandproblemareas.AIinnovationcanbestbetargetedtowardssocialgoodifthereareclearlyidentifiedproblemsthatitcanhelpsolve.

•Second,tosteerprogress,innovationpolicyshouldbeexplicitlylinkedto

governmentmissionsandspecific‘problemareas’.ThisshouldbeembeddedinInnovateUK’sgrantmakingandsomeoftheBritishBusinessBank’sfinancialsupport.Itwillrequirecoordinationwithothergovernmentdepartments.

•Third,thegovernmentshoulduse‘technologypush’policies–suchasR&Dtaxcredits–toalignAIinnovationpolicieswithitsmissions.Thiswillmeanlinkingthemmoreexplicitlytosolvingproblemsrelatedtodeliveringmissionsthaniscurrentlythecase.

•Fourthandcrucially,itshouldalsouse‘demandpull’policies–thosethat

establishamarketfornewinnovationswherecurrentlynoneexists.Outcomes-basedprocurementcanbeakeytoolforthis,thatgivesbusinessescertaintytoinvestandinnovate.Butthiswillrequireasignificantshiftfromthecurrentriskaverseapproachtoprocurementcurrentlyprevalentingovernment.

WhiletheUKgovernmentdoesalreadyusealltheaboveleverstosomeextent–viaInnovateUKforexample–itdoessowithoutsufficientstrategicdirection.Wearguethatthesecouldbefurtherleveraged,alongsidebroaderprocurement,fiscalandregulatoryincentives,tosteerAIdevelopmentanddeployment.

TableS1summarisesourrecommendationsandhighlightshowtheyconnectto

thegovernment’sAIOpportunitiesActionPlan(Clifford2025).

IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform7

TABLES1

Wemakefourrecommendationstoacceleratemission-alignedAIdeployment

Recommendation

ConnectiontoAIOpportunities

ActionPlan

1)In-depthtrackingofAI

deploymentandAIimpact

scenarios,bynewAItrackingunit

Needtoclearlytrackwhat

typeofAIdeploymentis

occurringandwherethegapsare.

Overtime,developin-

depthscenariosforjobandbusinessimpacts.

Plancallsfortechnical

horizonscanningandmarketintelligence.

Callsforassessmentofskills

gapsanddevisingof“sufficientopportunitiesforworkersto

reskill.”

2)Breakmissionsdowninto

specificproblemstatements,ascross-departmentaleffort,ledbymissioncouncils

Breakdownthegovernment’smissions(suchashealth)

intospecificproblemareasthatneedsolving.

CallsforAItobecoreto

deliveringthegovernment’s

missions,bothinpublicservicedeliveryandtheeconomymorewidely.

“AppointinganAIleadforeachmission.”

Cross-governmentworktoidentifyusecasesandincentivisedeployment.

3)Technologypush:align

innovationpolicyclearlywithmissionstocreate‘technologypush’,byInnovateUKandBBB

ClearlylinksomeofInnovateUKandBBB’sfundingto

solvingmission-relatedproblems.

Startwithareaswhereproblemsareclearlyestablished.

Preferentialcomputeanddataaccessformission-aligned

innovators.

Mission-focussednationalAItenders.

ConnectAIpoliciestonewindustrialstrategy.

4)Demandpull:Usesubsidies,procurementandpreferential

financingforAIadoptionand

marketshaping,bypublic

procurementbyalldepartments,InnovateUKandBBB

Graduallyincreasemoreoutcomes-focussedAI

procurement,backedbyacentralfund.

CreateBBBfundingstream

thatincentivisesAIadoption.

Agileprocurement,“two-way

partnershipwithAIvendorsandstartups”.

“DriveAIadoptionacrossthewholecountry”withfocusonSMEs.

Source:Authors'analysis

8IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform

1.

INTRODUCTION:AI

DEPLOYMENTNEEDS

NOTJUSTACCELERATION,BUTDIRECTION

Artificialintelligence(AI)technologiesareadvancingatarapidpace,andtheUK

governmenthasidentifiedAIasacrucialtoolfordrivingeconomicgrowth,enhancingpublicservices,andhelpingitdeliveritsmissions–suchasimprovingpublichealth.Thisagendaisreflectedinthegovernment’sAIOpportunitiesActionPlan(Clifford

2025).ItfocussesonremovingbarrierstoAIadoptionacrosstheeconomy–includingfosteringwidespreadadoptionbybusinesses–andithintsataligningAIinnovationwiththegovernment’smissions.

GenerativeAI,inparticular,hasthepotentialtohugelyimpacteconomyandsociety.Inawiderangeofcognitivetasks,leadingmodelshaveachievedundergraduateandPhDlevelreasoningskills(Jung2025).Inourpreviousstudy,wemodelledthat59percentoftasksintheeconomycouldbeimpactedbyexistinggenerativeAItechnology,ifcompaniesandpublicsectororganisationsweretobuildtheirprocessesaroundit(JungandSrinivasaDesikan2024).

Wethereforeseeenormouspotentialincutting-edgeAI,butsteeringthedirectionofitsapplicationwillbecrucial.ThereisariskthatmerelyacceleratingAIdeploymentwithoutsufficientdirectionmightfailtoimprovelivingstandardsanddeliverthe

government’smissions.

In2024,AIventurecapital(VC)investmentintheUKwascloseto$4billion.WhilethisisstillfarbehindtheUS–whichsawalmost20timesmoreVCinvestment–

theUKranksthird,afterChina(Dealroom.co2025).TheUKisalsoleadingEurope’sgenerativeAIpatents(thoughagainitisfarbehindChinaandtheUS,andbehindsomeEuropeancountriesonwiderR&Dmetrics)(CIIP2024)1UKscientistSirDemisHassabiswontheNobelPrizeinchemistryin2024forbreakthroughworkinAI.TheUKrankshighlyingenerativeAIresearchpublicationsanditsrenownedcomputerscienceuniversitydepartmentsalsoindicatehighpotential.Allthispointstothe

UK’sroleasanimportantAIinnovationhub.

Inthisreportwearguethat,buildingonthesefoundations,theUKcouldbecomeagloballeaderinpublicvaluecreatingAI.TheAIOpportunitiesActionPlan(Clifford2025),togetherwiththenewgovernment’sbroad-rangingvisiononmission-basedgovernment,couldboostgrowthanddeliverpublicvalue.Thisincludespriorityareassuchasimprovingpublichealthandhelpingdeliverabettertransportsystem.

However,currentlymuchofthepolicyfocusison‘accelerationism’–meaningmakingAIbetter,cheaperandwidelydeployed.‘AIsafety-ism’focussesonavoidingclearlydefinedrisks,nomatterhowadvancedorwhattypeofAIapplication.

1See:

/news/uk-tops-europe-ai-patents-un-study

IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform9

WearguethattoachieveAIforpublicvaluecreation,athirdstrandofpolicyisneeded:‘directionism’.ThisistheideathatpolicycansteerthedirectionofAI

deploymentactively,usingpolicyincentives–suchastargetedfunding,publicprocurementorpublicinfrastructureaccess–forbuildingproductsandservicesthatcreatepublicvalue,expressedthoughgovernmentmissions(Jung2025;Blili-Hamelinetal2025).

TABLE1.1

PolicyshouldfocusmoreonshapingthedirectionofAIinnovation,aswellasaccelerationandriskmitigation

Goal

Policytools

Examples

Accelerationism

IncreaseAIdeploymentbymakingitbetter,

easierandcheapertouse

Givebusinessesand

peopleaccesstocapital,digitalinfrastructure

andtalent

UKAIOpportunitiesPlan,investments

inpublicsector

supercomputing

capabilities(UKDayOne2024)

Safety-ism

Avoidclearly

identifiedrisks

Safetytesting,privacysafeguards,anti-biasassurance

EUAIAct,AIsafety

institutes(egUK,US,Singapore)

Directionism

'Steer'innovationtowardssolving

importantsocietalproblems

Provideincentives

tobuildservicesand

researchthatexplicitlysolvessocietalproblems

Outlinespecificmissionsandmilestonesegin

preventativehealthorclimate

Source:authors

MEASURINGTHEDIRECTIONOFINNOVATIONANDIDENTIFYING‘DEPLOYMENTGAPS’

Inthisreport,weshowempiricallythatthereisacaseforpolicytosteerAI

deploymentmoreproactively.Wehighlightthatthereareinnovationareasthatcouldhavehighsocialreturnsbutthatcurrentlyreceiverelativelylittleattention.These‘AIdeploymentgaps’highlightthatpolicycanplayaroleinincentivisingmission-alignedinnovation.

Weanalysethelandscapeof‘AIorganisations’intheUK–3,200organisationsthathaveAIaspartoftheirvalueproposition.Todoso,wedevelopedafirst-of-its-kinddatabaseofAIfirmsoperatingintheUK,whichhasdetailedinformationonthe

typeofAIapplications,thesectorfocus,andthespecificvaluepropositionsofAIfirms.WedevelopedthisdatasetbybuildingonUKRIdataandaugmentingitwithlargescaleAI-enabledwebscraping(seeappendixforourmethodology).ThisisafirststeptomeasurethecurrentdirectionofUKAIinnovationandconsiderwhereAIdeploymentgapslie.

Inthenextsection,wepresentourkeyfindingsfromtheanalysisofthisdataset.Wethenconducttwodeepdivesintothehealthandtransportationsectors

andshowwhereAIinnovationmightcurrentlybefallingshortofhelpingthegovernment’smissions.Inourrecommendationsection,wehighlighthowUKinnovationpolicycouldbecomemoremissionaligned.

10IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform

2.

KEYFINDINGSFROMOURNEWDATABASE

AIBUSINESSESFOCUSMAINLYONGENERALPROCESSIMPROVEMENTSRATHERTHANSPECIFICPROBLEMSOLVING

Inthissection,weinvestigatehownarrowlyfocussedfirms’valuepropositionsare.The‘mostspecific’applicationsarethosethatsolveaspecificprobleminaspecificsector(“usingAIfordampdetectioninhomes”,forexample).Theleastspecificonesarethosethatsolveageneralproblem(suchas“improvingbusinessprocesseswithAIanalytics”)andmarketthemselvestoawiderangeofsectors.

Wefindthat85percentofAIfirmsprovide‘general’AIsolutions.Theseare

valuepropositionsaimedatgeneralprocessimprovement–likeimproving

analytics,bettercustomerengagementorbetterproductdesign.Ontheone

hand,thiscanbeagoodthing,asAIisa“generalpurposetechnology”thatcan

haveamultitudeofapplications.Ontheotherhand,manyoftheapplicationsinourdatasetdescribefairlyabstractprocessimprovements,whichmaynotfullyrealisethetransformativepotentialofAIinsolvinghithertointractableproblems.Only15percentoforganisationsdevelopspecificsolutionsinspecificsectors,articulatinganarrowlydefinedvalueproposition.

Withregardstodeployment,wehypothesisethatsuchproblem-focussedAI

applicationscanhavemoretransformativepotential.Forinstance,DeepMind’s

AlphaFoldisahighlyspecialisedAIapplication,andisconsideredtohavea

transformativepotential.TheycreatedanAIsystemthatcanaccuratelypredict

aprotein’s3Dstructurefromjustitsaminoacidsequence,solvinga50-year

scientificchallenge.Itcouldbetransformativebecausebeingabletopredicta

protein’sstructureiscrucialforunderstandingdiseaseanddevelopingnewdrugs.

AIapplicationsthatarefocussedonsuch‘bottleneckproblems’canthereforehavehighpotentialtobetransformativeintheshortterm.SuchaproblemsolvingfocusalsoallowsustomoreclearlyassesswhattypeofprogressAIisdeliveringor,in

otherwords,whatthedirectionofAIinnovationis.ThedirectionofAIinnovationcanbesummarisedbytheproblemitisdeployedtosolve.

However,lessnarrowlyfocussedAIapplicationsthatleadtogradualprocess

improvementscanalsohavelargecumulativeimpactsovertime.Forinstance,

electricity’simpactonmanufacturingoccurredthroughgradualimprovementsthatultimatelyyieldeddramaticchange.Initially,factoriesmerelysubstitutedelectricmotorsforsteamengineswithminimalgain.Astechnologyevolved,machines

receiveddedicatedmotorsratherthanrelyingoncentralpowerdistribution.The

realbreakthroughcamewhenfactoriescompletelyredesignedtheirlayoutsaroundworkflowratherthanpowerrequirements,boostingproductivity(David1990).Suchinitialgradualchangemightbeginwiththe‘AIconsulting’companies–about18percentinourdataset–whichhelpbusinessesadoptAIintheirexistingprocesses.

IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform11

FIGURE2.1

Eighty-fivepercentoffirmsareworkingongeneralapplications

Numberoffirms

3’500

3’000

NumberofAIfirms

2’500

2’000

1’500

1’000

500

0

AIconsulting

GeneralAIsolutions

GeneralAIsolutionsinspecificsectors

Specificsolutionsinspecificsectors

Count

Source:IPPRanalysisofUKRI(2024)augmentedviaRAGwebscraping

AIADOPTIONISFOCUSSEDONTHEKNOWLEDGEECONOMYANDPROCESSIMPROVEMENT

Wefinddeploymentactivityacrossallsectorsoftheeconomy,andacrossbusinesslines.Thissuggeststherecouldbewide-reachingapplicationofAIacrossthe

economyinthenearterm.ItalsoshowsthatthereissignificantinnovationdynamismintheUKandthattheadoptionphaseisclearlyunderway.

Ourfindingsinfigure2.2suggestthat70percentofAIinnovationisconcentratedin‘knowledgeeconomy’sectors.Thisincludesprofessionalservices,financial

services,andinformationandcommunication,aswellashealthandlifesciences.Thisisinlinewithourfindingfromourpreviousreport,wherewehighlighted

that‘backoffice’knowledgejobsaresignificantlymorelikelytobeimpactedbygenerativeAIthan‘frontoffice’,customerfacingandmanualjobs(JungandSrinivasaDesikan2024).

Nexttotheknowledgesectors,wholesaleandretailtradealsoseeasignificantamountofAIactivity.ButapplicationsherearenotprimarilyputtingAIinbrick-and-mortarshops.Instead,activitymainlyinvolvesconsultancyservicessuchasanalysingcustomerdataandprovidingsalesinsights.

Lookingatapplicationsacrossbusinessunits,wefindthatsoftwareengineeringseesthebiggestuseofAIinnovation.Inotherwords,AIisbeingusedasacodingassistant.ProductandR&Dapplicationsmightdeliverthemostvisibleshort-termtransformativechangesbyimprovingproducts–buttheyseeonly15percentofactivity.Thisisfollowedbycustomeroperations,marketingandsales.Insum,

thissuggestsAIinnovationislargelyfocussedonprocessimprovement:technical

12IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform

efficiency(softwareengineeringandthesupplychain)andcustomerfocusedefficiency(marketingandsales,customeroperations,andthesupplychain).2

AnexampleofacompanyusingAIforsuchefficiency-focussedinnovationis

Synthesia,basedintheUK,whichaidscompanieswithtext-to-videocreation

andcommunication.ItisusedbymanyFortune100companiesforlearningand

development,marketing,andsalesenablement,amongothers(Benaich2024).Inourclassification,thisfallsunderboth‘marketingandsales’and‘customeroperations’.

FIGURE2.2

Nearly70percentoffirmsareintheknowledgeeconomyandhealthsectorsandonly18percentofapplicationsarein“productdevelopmentandR&D”

Numberoffirmsactiveinsectorandbusinessarea(firmscanbeactiveinmultiplefields)

Professional,scientificandtechnicalactivitiesHumanhealth,medicine,pharmaceuticalsFinancialandinsuranceactivities

InformationandcommunicationCommercialactivities,wholesaleandretailtrade

Government,publicadministration,socialwork

Marketsectors

andcompulsorysocialsecurityManufacturing

Education

Transportandstorage Arts,entertainmentandrecreationAdministrativeandsupportserviceactivities

Electricity,gas,steamandairconditioningsupply

Renewableenergy,environmentalprotectionandmitigatingclimateimpacts

Accommodationandfoodservices

Agriculture,forestryandfishing

Construction

Realestateactivities

Watersupply,sewerage,wastemanagementandremediationactivities

Marketingandsales

Customeroperations

MiningandquarryingDefense,policingandarmsmanufacturing

718

932

1,248

1,523

159

452

612

264

385

402

744

933

1,021

230

355

497

248

251

458

769

622

894

200

641

712

313

193

592

632

688

857

61

261

712

313

193

483

614

367

536

261

230

293

162

77

227

405

473

545

75

215

232

152

171

149

256

336

356

186

87

127

76

78

122

182

329

359

12

55

78

40

154

105

198

230

282

101

52

90

40

58

164

150

198

239

13

40

66

27

62

99

160

68

135

17

45

42

42

71

43

110

135

161

34

29

62

25

33

65

81

126

126

23

26

79

25

56

87

104

56

104

27

15

32

13

16

33

59

114

111

35

17

33

9

20

39

69

84

108

21

24

41

14

25

54

85

69

102

9

36

46

18

16

12

37

43

52

12

6

10

8

7

16

29

41

47

13

7

12

8

9

4

14

45

45

6

4

5

3

2

ProductandR&D

Softwareengineering

Supplychain

Riskandlegal

Strategyandfinance

CorporateIT

Talentandorganisation

1,400

1,200

1,000

800

600

400

200

Business

Source:IPPRanalysisofUKRI(2024)augmentedviaRAGwebscraping

2InJungandSrinivasaDesikan(2024)wefoundthatthemajorityoftasksinthesejobscouldbe

significantlyaidedbygenerativeAI.Thisisthereforeanareawherefurthergrowthmightbeexpected.

IPPR|ThedirectionofAIinnovationintheUKInsightsfromanewdatabaseandaroadmapforreform13

AIfirmsinourdatasetareprimarilyfocussedonprovidingservicesoverresearch(90percentservicesversus10percentresearchfocus).Thehealthcareand

educationsectorshavethehighestproportionofresearch-focussedfirms.Intermsofcustomers,mostAIfirmsselltheirproducttootherbusinesses:about

59percentoffirmsaretargetingbusinesses,aboutaquarterareaimedatgovernmentcustomers,andconsumer-focussedapplicationsmakeupabout

15percent.

Intheoverallsample,22percentofthefirmsreceivedsometypeofpublicfunds

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论