




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省大理州体育中学2025年高三第三次质量考评试卷数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.2.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列3.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A. B. C. D.4.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.5.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A. B. C. D.6.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或7.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则8.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为()A. B. C. D.9.函数的部分图像大致为()A. B.C. D.10.复数的共轭复数为()A. B. C. D.11.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种 B.70种 C.75种 D.150种12.已知,则的大小关系是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知均为非负实数,且,则的取值范围为______.14.从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,则事件“抽到的产品不是一等品”的概率为________15.已知椭圆:的左、右焦点分别为,,如图是过且垂直于长轴的弦,则的内切圆方程是________.16.的展开式中,的系数为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.18.(12分)求下列函数的导数:(1)(2)19.(12分)已知函数,.(1)若曲线在点处的切线方程为,求,;(2)当时,,求实数的取值范围.20.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.21.(12分)如图,设A是由个实数组成的n行n列的数表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)请写出一个AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由;(Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合.22.(10分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.2.C【解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.3.A【解析】
根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】为定义在上的偶函数,图象关于轴对称又在上是增函数在上是减函数,即对于恒成立在上恒成立,即的取值范围为:本题正确选项:本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.4.B【解析】
将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.本题主要考查了枚举法求古典概型的方法,属于基础题型.5.D【解析】
由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,,设,该函数在为增函数,,,在上有零点,故函数的“新驻点”为,那么故选:.本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..6.C【解析】
将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.7.D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.8.B【解析】
首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.【详解】由题意将代入双曲线的方程,得则,由,得的周长为,设的内切圆的半径为,则,故选:B本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.9.A【解析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.10.D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D熟悉复数的四则运算以及共轭复数的性质.11.C【解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C.本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.12.B【解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.本题主要考查对数、指数的大小比较,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.【详解】因为,,令,则,因为,当且仅当时等号成立,所以,,即,令则函数的对称轴为,所以当时函数有最大值为,即.当且,即,或,时取等号;因为,当且仅当时等号成立,所以,令,则函数的对称轴为,所以当时,函数有最小值为,即,当,且时取等号,所以.故答案为:本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求解本题的关键;属于综合型、难度大型试题.14.0.35【解析】
根据对立事件的概率和为1,结合题意,即可求出结果来.【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,,抽到不是一等品的概率是,故答案为:.本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题.15.【解析】
利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标.【详解】由已知,,,,设内切圆的圆心为,半径为,则,故有,解得,由,或(舍),所以的内切圆方程为.故答案为:.本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题.16.16【解析】
要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16此题考查二项式的系数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1))当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.18.(1);(2).【解析】
(1)根据复合函数的求导法则可得结果.(2)同样根据复合函数的求导法则可得结果.【详解】(1)令,,则,而,,故.(2)令,,则,而,,故,化简得到.本题考查复合函数的导数,此类问题一般是先把函数分解为简单函数的复合,再根据复合函数的求导法则可得所求的导数,本题属于容易题.19.(1);(2)【解析】
(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;(2)由已知可得恒成立,构造函数,对函数求导,讨论和0的大小关系,结合单调性求出最大值即可求得的范围.【详解】(1)由题得,因为在点与相切所以,∴(2)由得,令,只需,设(),当时,,在时为增函数,所以,舍;当时,开口向上,对称轴为,,所以在时为增函数,所以,舍;当时,二次函数开口向下,且,所以在时有一个零点,在时,在时,①当即时,在小于零,所以在时为减函数,所以,符合题意;②当即时,在大于零,所以在时为增函数,所以,舍.综上所述:实数的取值范围为本题考查函数的导数,利用导数求函数的单调区间及函数的最小值,属于中档题.处理函数单调性问题时,注意利用导函数的正负,特别是已知单调性问题,转化为函数导数恒不小于零,或恒小于零,再分离参数求解,求函数最值时分析好单调性再求极值,从而求出函数最值.20.(1)(2)【解析】试题分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;
(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标.试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.21.(Ⅰ)答案见解析;(Ⅱ)不存在,理由见解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都为-1,其余的都取1,即满足题意;(Ⅱ)用反证法证明:假设存在,得出矛盾,从而证明结论;(Ⅲ)通过分析正确得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 前台文员工作提升计划
- 住院患者满意度调查与分析计划
- 建立高效团队的年度管理策略计划
- 工业设施保安工作总结计划
- 情感表达训练小班情绪管理教育计划
- 培养幼儿园小班的审美意识与艺术表达能力计划
- 2025年银行资格证考试全国卷试题及答案
- 2035年国际金融理财师考试的行业发展动态与分析试题及答案
- 小语种证书考试问题解析试题及答案
- 备考必修的试题及答案分析
- 煤炭地下气化原理课件
- 金螳螂企业管理课件
- 2×25MW水电站电气部分课程设计
- 《探索三角形全等的条件》第一课时参考课件1 公开课课件
- 企业年金培训版教学课件
- 健康信息学中医药学语言系统语义网络框架
- 2023年中考语文一轮复习考点梳理+对点训练(原卷版+解析版)(打包7套)
- 幼儿绘本故事:如果不洗澡
- 农业机械使用与维护课程标准
- 汽轮机上缸吊出及翻缸风险分析及管控措施
- 普通高中学生综合素质档案填写样表
评论
0/150
提交评论