




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华中师范大学第一附中2024-2025学年高三第五次适应性训练数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.2.执行如图所示的程序框图,则输出的结果为()A. B. C. D.3.已知实数,则的大小关系是()A. B. C. D.4.数列满足:,则数列前项的和为A. B. C. D.5.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.6.已知集合,,则等于()A. B. C. D.7.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)8.函数的对称轴不可能为()A. B. C. D.9.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.10.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3 B.4 C.5 D.611.已知,则()A. B. C. D.12.复数的虚部为()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,的系数为________.14.已知为等差数列,为其前n项和,若,,则_______.15.若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是______.16.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.18.(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.19.(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中20.(12分)已知等差数列的公差,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.22.(10分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.2.D【解析】循环依次为直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.3.B【解析】
根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.4.A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.5.D【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.6.A【解析】
进行交集的运算即可.【详解】,1,2,,,,1,.故选:.本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.7.D【解析】
求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【详解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
则,
∴.
故选:D.本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.8.D【解析】
由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.本题主要考查余弦函数的图象的对称性,属于基础题.9.A【解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.10.C【解析】
模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p≤7,执行循环体,p=9,S=511,输出S的值为511,此时,不满足条件p≤7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C.本题主要考查程序框图,属于基础题.11.C【解析】
利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.12.D【解析】
根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.本题考查复数的除法运算和复数的概念.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.
故答案为:.本题考查二项展开式定理的应用,属于基础题.14.1【解析】试题分析:因为是等差数列,所以,即,又,所以,所以.故答案为1.【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,,,,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.15.【解析】
先将函数在和两处取得极值,转化为方程有两不等实根,且,再令,将问题转化为直线与曲线有两交点,且横坐标满足,用导数方法研究单调性,作出简图,求出时,的值,进而可得出结果.【详解】因为,所以,又函数在和两处取得极值,所以是方程的两不等实根,且,即有两不等实根,且,令,则直线与曲线有两交点,且交点横坐标满足,又,由得,所以,当时,,即函数在上单调递增;当,时,,即函数在和上单调递减;当时,由得,此时,因此,由得.故答案为本题主要考查导数的应用,已知函数极值点间的关系求参数的问题,通常需要将函数极值点,转化为导函数对应方程的根,再转化为直线与曲线交点的问题来处理,属于常考题型.16.【解析】
根据图像的平移变换得到函数的解析式,再利用整体思想求函数的值域.【详解】函数的图像向右平移个单位得,,,.故答案为:.本题考查三角函数图像的平移变换、值域的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意整体思想的运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或;(2).【解析】
(1)时,分类讨论,去掉绝对值,分类讨论解不等式.(2)时,分类讨论去绝对值,得到解析式,由函数的单调性可得的最小值,通过恒成立问题,得到关于的不等式,得到的取值范围.【详解】(1)因为,所以,所以不等式等价于或或,解得或.所以不等式的解集为或.(2)因为,所以,根据函数的单调性可知函数的最小值为,因为恒成立,所以,解得.所以实数的取值范围是.本题考查分类讨论去绝对值,分段函数求最值,不等式恒成立问题,属于中档题.18.(1)①当时,在上单调递减,在上单调递增;②当时,在上单调递增;(2).【解析】
(1)求出函数的定义域和导函数,,对讨论,得导函数的正负,得原函数的单调性;(2)法一:由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【详解】(1)的定义域为,,①当时,由得,得,在上单调递减,在上单调递增;②当时,恒成立,在上单调递增;(2)法一:由得,令(),则,在上单调递减,,,即,令,则,在上单调递增,,在上单调递减,所以,即,(*)当时,,(*)式恒成立,即恒成立,满足题意法二:由得,,令(),则,在上单调递减,,,即,当时,由(Ⅰ)知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,,,使得,当时,,即,又,,,不满足题意,综上所述,的取值范围是本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.19.,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】
根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解:解得.所以,该城市驾驶员交通安全意识强的概率根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计所以有的把握认为交通安全意识与性别有关.由题意可知分数在,的分别为名和名,所以分层抽取的人数分别为名和名,设的为,,的为,,,,则基本事件空间为,,,,,,,,,,,,,,共种,设至少有人得分低于分的事件为,则事件包含的基本事件有,,,,,,,,共种所以.本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.20.(1);(2).【解析】
(1)根据等比中项性质可构造方程求得,由等差数列通项公式可求得结果;(2)由(1)可得,可知为等比数列,利用分组求和法,结合等差和等比数列求和公式可求得结果.【详解】(1)成等比数列,,即,,解得:,.(2)由(1)得:,,,数列是首项为,公比为的等比数列,.本题考查等差数列通项公式的求解、分组求和法求解数列的前项和的问题;关键是能够根据通项公式证得数列为等比数列,进而采用分组求和法,结合等差和等比数列求和公式求得结果.21.(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提升智能家居品牌的市场竞争力计划
- 年度工作重心的调整与应对计划
- 2024小语种证书拿证攻略试题及答案
- 理解概念2025年国际金融理财师试题及答案
- 小语种考试写作技巧分享与试题及答案
- 提升小语种考试信心与口语表达的试题及答案
- 网络编辑师证书考试2024年改版信息及试题及答案
- 互动式理财顾问的未来试题及答案
- 优雅应对的小语种证书考试试题及答案
- 网络编辑师试题及答案争分夺秒备考攻略
- 高三数学复习备考策略
- 六、七年级走进文言文译文
- 幼儿园中班美术《疯狂的头发》课件
- 半月板损伤的护理查房
- 沪教版初中数学初二数学上册《二次根式的运算》教学设计
- 粮库出租合同书本
- 皮肤科治疗知情同意书
- 2022年桂林临桂区教师招聘考试真题
- 【基于STM32智能门锁系统的设计10000字(论文)】
- 液压支架外文翻译
- 我的家乡烟台课件
评论
0/150
提交评论