




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省凤阳县二中高考第一次模拟考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的一次项系数为()A. B. C. D.2.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.3.已知复数是正实数,则实数的值为()A. B. C. D.4.函数的图象可能为()A. B.C. D.5.已知数列为等差数列,为其前项和,,则()A.7 B.14 C.28 D.846.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.47.过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是()A. B. C. D.8.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A. B. C. D.9.已知实数满足不等式组,则的最小值为()A. B. C. D.10.设复数满足,则()A. B. C. D.11.已知集合A,则集合()A. B. C. D.12.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线的焦点,过作直线与相交于两点,且在第一象限,若,则直线的斜率是_________.14.直线过圆的圆心,则的最小值是_____.15.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.16.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.18.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则.19.(12分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.20.(12分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.21.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.22.(10分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.【详解】由题意展开式中的一次项系数为.故选:B.【点睛】本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.2.D【解析】
连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题3.C【解析】
将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.4.C【解析】
先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.5.D【解析】
利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得..故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6.C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.B【解析】
利用抛物线的定义可得,,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.【详解】设抛物线的焦点为F,设点,由抛物线的定义可知,线段AB中点的横坐标为3,又,,可得,所以抛物线方程为.故选:B.【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.8.A【解析】分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.9.B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.10.D【解析】
根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.11.A【解析】
化简集合,,按交集定义,即可求解.【详解】集合,,则.故选:A.【点睛】本题考查集合间的运算,属于基础题.12.D【解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
作出准线,过作准线的垂线,利用抛物线的定义把抛物线点到焦点的距离转化为点到准线的距离,利用平面几何知识计算出直线的斜率.【详解】设是准线,过作于,过作于,过作于,如图,则,,∵,∴,∴,∴,,∴,∴直线斜率为.故答案为:.【点睛】本题考查抛物线的焦点弦问题,解题关键是利用抛物线的定义,把抛物线上点到焦点距离转化为该点到准线的距离,用平面几何方法求解.14.【解析】
直线mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性质即可得出.【详解】∵mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,当且仅当m=n时取等号.∴则的最小值是4.故答案为:4.【点睛】本题考查了圆的标准方程、“乘1法”和基本不等式的性质,属于基础题.15.-1【解析】
由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.16.10【解析】
作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)1.【解析】
(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2),,由(1)通过计算得到,即最大值为1.【详解】(1)将曲线C的参数方程化为普通方程为,即;再将,,代入上式,得,故曲线C的极坐标方程为,显然直线l与曲线C相交的两点中,必有一个为原点O,不妨设O与A重合,即.(2)不妨设,,则面积为当,即取时,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.18.(1)见解析(2)需要,见解析【解析】
(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,,所以为了使损失尽量小,小张需要检查其余所有零件.【点睛】本题考查正态分布的应用,考查二项分布的期望,考查补集思想的应用,考查分析能力与数据处理能力.19.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由正弦定理边化角,再结合转化即可求解;(Ⅱ)可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【详解】(Ⅰ)由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.(Ⅱ)设,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【点睛】本题考查正弦定理和余弦定理的综合运用,属于中档题20.(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立时,的取值范围;(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.【详解】(1)由题意得,则,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得.当函数在区间上单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.∴在区间内存在零点,同理在区间内存在零点.∴在区间内恰有两个零点.由(1)易知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,∴.令,得,∴函数在区间上单凋递减,在区间上单调递增.记的两个零点为,∴,必有.由,得.∴又∵,∴.综上所述,实数的取值范围为.【点睛】本题考查导数的综合应用,涉及到函数的单调性、零点问题,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.21.(1),证明见解析;(2)【解析】
(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省莆田市莆田第二十五中学2024−2025学年高一下学期3月月考 数学试题(含解析)
- 急救药品相关知识考核试题
- 辽宁师范大学《平面广告设计》2023-2024学年第二学期期末试卷
- 四川省自贡市曙光中学2024-2025学年初三下学期第二次段考物理试题试卷含解析
- 山东省郯城县重点名校2025年第二学期初三第二次模拟考试语文试题含解析
- 山东省枣庄市滕州市2024-2025学年初三下学期开学摸底考试化学试题含解析
- 辽宁建筑职业学院《广播电视叙事学》2023-2024学年第一学期期末试卷
- 曲阜远东职业技术学院《特殊儿童早期干预》2023-2024学年第一学期期末试卷
- 武汉工程大学邮电与信息工程学院《微分几何实验》2023-2024学年第二学期期末试卷
- 豫东名校2025年第二学期高三期末考试历史试题试卷含解析
- 2022四川成都市邛崃市天府现代种业园管理委员会公开招聘员额制社会化专业人才9人(必考题)模拟卷和答案
- 2022云南省气象事业单位公开招聘气象类专业(第一批)高校毕业生45人(必考题)模拟卷及答案
- GB∕T 23349-2020 肥料中砷、镉、铬、铅、汞含量的测定
- DB32-T 769-2021餐饮计量规范-(高清现行)
- 蓝海华腾变频器说明书
- 北京市引进人才审批表格模板
- 第14篇局部水基灭火系统(修改后版本)
- 配管配线工程量计算实例
- 【图文】摄影技巧-专题摄影(138页精品培训课件-PPT)
- 后印象主义美术页PPT课件
- 多芒寺阳塘仁波切生平简介(PPT)
评论
0/150
提交评论