




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专项训练七求阴影部分的面积1.如图,在☉O中,若∠ACB=30°,OA=6,则扇形OAB(阴影部分)的面积是()A.12π B.6π C.4π D.2π2.生活情境(2024·沧州孟村县模拟)如图是型号为24英寸(车轮的直径为24英寸,约60cm)的自行车,现要在自行车两轮的阴影部分(分别以C,D为圆心的两个扇形)装上挡水的铁皮,量出四边形ABCD中∠DAB=115°,∠ABC=125°,那么安装单侧(阴影部分)需要的铁皮面积约是 ()A.300πcm2 B.500πcm2 C.900πcm2 D.1200πcm23.如图,等圆☉O1和☉O2相交于A,B两点,☉O1经过☉O2的圆心O2,若O1O2=2,则图中阴影部分的面积为 ()A.2π B.43π C.π D.24.(2023·鄂州)如图,在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,O为BC的中点,以点O为圆心,OB的长为半径作半圆,交AC于点D,则图中阴影部分的面积是 ()A.53-33π B.53C.53-2π D.103-2π5.(2024·河北三模)如图,将正六边形纸片的空白部分剪下,得到三部分图形,记Ⅰ,Ⅱ,Ⅲ部分的面积分别为S1,SⅡ,SⅢ.给出以下结论:①Ⅰ和Ⅱ合在一起能拼成一个菱形;②Ⅲ中最大的内角是150°;③SⅢ=2(S1+SⅡ).其中正确的是 ()A.①② B.①③C.②③ D.①②③6.把一个圆心角为120°,半径为9cm的扇形纸片,通过用胶水粘贴制作成了一个底面周长为4πcm的圆锥侧面,如图所示,则圆锥上粘贴部分(图中阴影部分)的面积是 ()A.8πcm2 B.9πcm2 C.19πcm2 D.27πcm27.如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为 ()A.23π-32 B.23πC.43π-23 D.43π8.如图,☉O的半径为3,边长为2的正六边形ABCDEF的中心与O重合,M,N分别是AB,FA的延长线与☉O的交点,则图中阴影部分的面积是 ()A.π-3 B.32π-C.94π-3 D.94π9.如图,在等腰直角三角形ABC中,AB=AC=2,以A为圆心,以AB为半径作BDC;以BC为直径作CAB.则图中阴影部分的面积是.(结果保留π)
10.如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).通过测量得到扇形AOB的圆心角为90°,OA=1m,点C,D分别为OA,OB的中点,则花窗的面积为m2.
图1图211.(2024·资阳)如图,在矩形ABCD中,AB=4,AD=2.以点A为圆心,AD长为半径作弧交AB于点E,再以AB为直径作半圆,与DE交于点F,则图中阴影部分的面积为.
12.(2023·郴州)如图,在☉O中,AB是直径,C是圆上一点.在AB的延长线上取一点D,连接CD,使∠BCD=∠A.(1)求证:直线CD是☉O的切线.(2)若∠ACD=120°,CD=23,求图中阴影部分的面积.(结果用含π的式子表示)1.(2023·连云港)如图,矩形ABCD内接于☉O,分别以AB,BC,CD,AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是 ()A.414π-20 B.41C.20π D.202.如图,某玩具品牌的标志由半径为1cm的三个等圆构成,且三个等圆☉O1,☉O2,☉O3相互经过彼此的圆心,则图中三个阴影部分的面积之和为 ()A.14πcm2 B.13πcm2 C.12πcm23.如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连接BC,CD.(1)求证:CD∥AB.(2)若AB=4,∠ACD=30°,求阴影部分的面积.
【详解答案】基础夯实1.B解析:∵AB=AB,∠ACB=30°,∴∠AOB=2∠ACB∴S扇形OAB=60π360×62=6π.故选B2.A解析:∵四边形ABCD中∠DAB=115°,∠ABC=125°,∴∠ADC+∠BCD=120°,∵车轮的直径为24英寸,约60cm,∴需要的铁皮面积约是120×π×30×30360=300π(cm2).故选A3.D解析:如图,连接O2B,O1B,令AB与O1O2交于点C.∵等圆☉O1和☉O2相交于A,B两点,∴O1O2⊥AB,AC=BC,O1C=O2C.∵☉O1和☉O2是等圆,∴O1A=O1O2=O1B=O2B.∴△O1O2B是等边三角形.∴∠O1O2B=60°.∵∠ACO1=∠BCO2=90°,AC=BC,O1C=O2C,∴△ACO1≌△BCO2(SAS).∴S△ACO1S扇形BO4.C解析:如图,连接OD,BD,作OH⊥CD交CD于点H.∵在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,∴BC=ABtan∠ACB=ABtan30°=433=43.∵O为BC的中点,以点O为圆心,OB的长为半径作半圆,∴BC是半圆的直径.∴∠CDB=90°.∵∠ACB=30°,∴BD=12BC=23,CD=BC·cos∠BCD=43×32=6.又∵OB=OC=OD=12BC=23,∴OB=OD=BD.∴△OBD是等边三角形.∴∠BOD=60°.∵OH⊥CD,∠OCH=30°,∴OH=12OC=3.∴S阴影=S△ACB-S△COD5.B解析:如图,将如图的正六边形可以分割成6个全等的三角形,于是Ⅰ部分、Ⅱ部分相当于其中的1个三角形,Ⅲ部分相当于4个这样的三角形,因此:①Ⅰ和Ⅱ合在一起能拼成一个菱形是正确的;②Ⅲ中最大的内角是(6-2)×180°6=120°,因此②不正确的;③SⅢ综上所述,正确的有①③.故选B.6.B解析:∵圆锥的底面周长为4πcm,∴围成圆锥的扇形弧长为4πcm,∵扇形的弧长为120π×9180∴粘贴部分的弧长为6π-4π=2π(cm),∴圆锥上粘贴部分的面积是12×2π×9=9π(cm2).7.B解析:如图,连接OA,OB,过点O作OC⊥AB,由题意可知∠AOB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=AO=BO=2,∴S扇形AOB=60π×2∵OC⊥AB,∴∠OCA=90°,AC=1,∴OC=3,∴S△AOB=∴阴影部分的面积为23π-3.8.B解析:如图,延长BC,CD,DE,EF分别交☉O于点I,J,K,H,过点O作OQ⊥CD于点Q,∵正六边形ABCDEF的中心为O,∴∠COD=360°∵OC=OD,∴CQ=12CD=1,∠COQ=12∠∴OC=2CQ=2,在Rt△OCQ中,OQ=OC∴S△OCD=12CD∴S正六边形ABCDEF=6S△∴图中阴影部分的面积=16×(S☉O-S正六边形ABCDEF)=16·(9π-63)=39.π-2解析:如图,取BC的中点O,连接OA.∵∠CAB=90°,AC=AB=2,∴BC=2AB=2,∴OA=OB=OC=1,∴S阴影=S半圆-S△ABC+S扇形ACB−S△ACB10.π4-S扇形OAB=90·π·∵点C,D分别是OA,OB的中点,∴OC=OD=12∴S△OCD=12×1∴花窗的面积为π4-111.3+23π解析:如图,连接AF,由题意易知△AEF是等边三角形,S阴影=S半圆-S扇形60π·22360−60π12.解:(1)证明:如图,连接OC.∵AB是☉O的直径,∴∠ACB=∠OCA+∠OCB=90°.∵OA=OC,∴∠OCA=∠A.∵∠BCD=∠A,∴∠OCA=∠A=∠BCD.∴∠BCD+∠OCB=∠OCA+∠OCB=90°.∴OC⊥CD.∵OC是☉O的半径,∴直线CD是☉O的切线.(2)∵∠ACD=120°,∠ACB=90°,∴∠A=∠BCD=120°-90°=30°.∴∠BOC=2∠A=60°.∵在Rt△OCD中,tan∠BOC=CDOC=tan60°,CD=23∴23OC=3.∴S阴影=S△OCD-S扇形BOC=12×23×2-60×π×22能力提升1.D解析:如图,连接AC.∵矩形ABCD内接于☉O,AB=4,BC=5,∴AC2=AB2+BC2.∴阴影部分的面积是S矩形ABCD+π×AB22+π×BC22-πAC22=S矩形ABCD+π×14(AB2+BC2-AC2)=S矩形ABCD=4×5=20.故选D.2.C解析:根据圆的对称性可知,图中三个阴影部分的面积相等.如图,连接AO1,AO2,O1O2,则AO1=AO2=O1O2.∵△AO1O2是等边三角形,∴∠AO1O2=60°,弓形AO1,AO2,O1O2的面积相等.∴阴影AO1O2的面积=扇形AO1O2的面积=60π×12360=16π(cm2).∴图中三个阴影部分的面积之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年肿瘤早筛技术临床应用创新案例与市场前景研究报告
- 企业授信业务管理办法
- 工业互联网平台云计算资源动态分配策略在智能工厂生产调度中的应用案例报告
- 会展场馆人员管理办法
- 公司人事劳资管理办法
- 保险理赔服务管理办法
- 会展展览项目管理办法
- 人员能力评定管理办法
- 乡镇流动商贩管理办法
- 保险造林项目管理办法
- 教练场地技术条件说明
- 以人民为中心思想存在问题
- GB/T 19466.1-2004塑料差示扫描量热法(DSC)第1部分:通则
- GB/T 18606-2001气相色谱-质谱法测定沉积物和原油中生物标志物
- GB 2811-1989安全帽
- 《中国近现代史纲要》 课件 第十一章 中国特色社会主义进入新时代
- 金字塔原理(完整版)
- “扬子石化杯”第36届中国化学奥林匹克(初赛)选拔赛暨2022年江苏赛区复赛试题及答案
- 公共经济学ppt课件(完整版)
- 浙江省引进人才居住证申请表
- DB62∕T 4134-2020 高速公路服务区设计规范
评论
0/150
提交评论