




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GTC2025:
REDEFININGAI’S
COMPUTATIONALHORIZONWITHTOKENECONOMY
ABiresearch®
THETECHINTELLlGENCEEXPERTSSM
NVIDIA,sGPUTechnoIogyConference(GTC2025)markedawatershedmoment,within-personattendancesurgingto25,000attendeesrepresenting800globalcompanies—upfrom16,000thepreviousyear—whilevirtualparticipationheldsteadyatapproximately
300,000.Theexhibitionfloorexpandedtonearly400companies,withnotablegrowthin
thestartuppavilion.TheevidentexcitementthroughouttheeventevokedmemoriesoftheearlyMobileWorldCongressgatheringsofthe2000sorMicrosoft’sProfessionalDevelopersConferencesintheirmid-2000sheyday.
JensenHuang’skeynotearticulatedaparadigmshifttranscendingMoore’sLaw,presentingacomputationalarchitecturevisionoperatingatunprecedentedscaletosupportnext-gen-erationArtificialIntelligence(AI)frameworks,includingagenticsystems.Despiteitstechnicalcomplexity,themessagewasclear:wearewitnessingafundamentaltransitionfromgeneralpurposetoacceleratedcomputing,drivenbyexponentialAIdemand.
ThistransformationredefinesAIcomputationalefficiencyaroundqualitytokengeneration—thefoundationofGenerativeArtificialIntelligence(GenAI)andAgenticAIsystems.Thenewparadigmintegratesthreecriticalelements:rawGraphicsProcessingUnit(GPU)perfor-
mance,sophisticatedGPU-GPUinterconnectcommunications,andoptimizedstorage-GPUinteractions,allenhancedbyworkload-specificlibraries(CUDA-X)tailoredtotargetedver-
ticalsandspecificusecases.WhilecompetitorsremainfixatedonbenchmarkingindividualchipsusingtraditionalmetricslikeTrillionsofOperationsPerSecond(TOPS)orFloating
PointOperationsPerSecond(FLOPS),NVIDIAhasshiftedtheevaluationparadigmfromdataprocessingpipestotokengenerationefficiency—measuringperformancebythequalityandquantityoftokensproducedpersecond,whilereducingthecostandpowerconsumptionofeachtokengeneratedbythesystem.TrueAIcomputationalperformancenowreflectshowtokengenerationscaleswithadditionalGPUsthroughhardwareinnovationandsoftware
optimization.
Followingthisstrategicvision,HuangunveiledtheBlackwellUltrachip,deliveringa50%per-formanceincreaseoveritspredecessor,beforerevealinganambitiousroadmapfeaturing
theforthcomingVeraRubinandRubinUltrachips,andrelatedsystemsslatedfor2026and2027—thelatterpromisingastaggering14Xperformanceleap.Thistransparentroadmap
demonstratesNVIDIA’sconfidence,whileprovidingecosystempartnerswithunprecedent-edstrategicvisibility.ForOriginalEquipmentManufacturers(OEMs),softwaredevelopers,
andendusers,thisclarityenablesstrategicalignment,resourceallocationoptimization,andacceleratedplatformadoption.Forcompetitors,itsimultaneouslyestablishesanintimidatinginnovationbenchmark,whileexposingNVIDIAtoexecutionrisksthatrivalsmightexploit.
Thisstrategictransparency,whilefosteringdeeperindustrycollaboration,alsoamplifiescompetitivepressuresandexecutionstakes—particularlyamidgeopoliticaluncertaintiessurroundingsovereignAIinitiatives,manufacturingshifts,andevolvingregulatoryland-scapes.
Inanutshell,GTC2025mayberememberedasreshapingthevisionofcomputing—redefin-ingitthroughtokengenerationefficiency,ratherthanfasterprocessingpipelinestypicaloftraditionalsequentialcomputing.Throughthisvision,NVIDIAestablishesitselfasthefounda-tionoftheAIeconomy.Organizationsshouldrecognizethisshifttoacceleratedcomputingasrevolutionary,necessitatingstrategicrealignmentoftechnologyroadmapsandinvest-
mentpriorities.
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY2
BusinessesmustevaluateAIinfrastructurebasedontokengenerationcapabilities.AscomputationaldemandsforAgenticAIscaleexponentiallybeyondinitialprojections,organizationswillneedtoadoptmoresophisticatedforecastingmethodologies,acknowledgingthatcurrentestimateslikelyunderstatefuturerequirements.Withthisinmind,ABIResearchiscurrentlydevelopingcomprehensiveforecaststhatincludevaluecreationmetricsforAgenticAIsystemsandassociatedCapitalExpenditure(CAPEX)assessmentstodetermineReturnonInvestment(ROI)tippingpoints.
Tofullyleveragethismomentum,ecosystempartnersmuststrategicallyaligntheirinvestments,inno-vationpipelines,andsupplychainplanningwiththisnewtransformationwherequalitytokengenera-tionbecomescentraltotheAIfabric.NVIDIAcompetitorsshouldrecognizethistransformationasbothachallengeandcatalyst,emphasizingthenecessityofacceleratingtheirowninnovationcyclesand
strategicpartnerships.
However,industryplayersmustalsocarefullyanalyzeinherentrisks,chiefamongthemtheover-de-pendenceonasinglevendorecosystem,potentialexecutionfailuresagainstNVIDIA’sambitiousroad-map,escalatinginfrastructurecosts,andthestrategicvulnerabilityofbettingtooheavilyonspecific
AIarchitecturalapproachessuchasAgenticAIbeforethemarketfullymatures.Organizationsshouldproactivelyadoptriskmitigationstrategies,includingdiversifiedsupplychains,strategicpartnerships,scenarioplanning,andadaptableoperationalframeworks,toremainresilientamidthesedynamic
marketconditions.
MalikSaadi
VicePresident
MalikKamal-Saadiishead oftheStrategicTechnology GroupatABIResearch focusingontransformative technologiesandinnovation acrossTelecommunicationsandConnectivityTechnologies, EnterpriseITandOTTech-nologies,Cloud,Edge,andDis- tributedComputing,ArtificialIntelligence,DataWarehouses,RoboticsandAutomation,and otheradjacenttechnologies. Inhisrole,MalikleadsABI Research’sthoughtleader- ship,consultancyservices, syndicatedservices,strategicpositioning,marketforecasts, competitiveassessments,andmarketanalysis.
NVIDIADYNAMO—REVOLUTIONIZINGTOKENGENERATION,BUTWITHIMPLEMENTATIONCHALLENGES
AtGTC2025,NVIDIAunveiledDynamo,agroundbreakingopen-sourcedistributedinferenceframeworkdesignedtodramaticallyenhancetokengenerationefficiency—thenewbench-markforAIcomputationalperformance.Thisinnovationdirectlyaddressestheescalating
computationaldemandsofAgenticAIsystemsbyoptimizinglarge-scaleGPUdeploymentsformaximumtokenthroughput.Operatingasahigher-levelabstractionaboveCUDA-Xli-
braries,DynamoextendstheircapabilitiesfromindividualGPUoptimizationtosophisticatedclustermanagementacrossdistributedenvironments.
Dynamo’sarchitectureintroducesthreetransformativeoptimizations:disaggregatedinfer-
ence,hierarchicalKVcachemanagement,andintelligentcacherouting.Bysplittinginferenceintoseparateprefill(calculatingKVpairsfrominput)anddecode(generatingoutputtokens)phasesoperatingondedicatedGPUresources,Dynamosignificantlyincreasesthroughput—withpreliminarydatashowingmodelslikeLlama70Bachievingovertwicetheperformanceusingdisaggregationalone.TheframeworkemploysasophisticatedhierarchicalKVcache
systemthatoffloadscachesfromexpensiveGPUHighBandwidthMemory(HBM)tomore
economicalhostRandomAccessMemory(RAM)orNon-VolatileMemoryExpress(NVMe)
storage,whileitsintelligentroutertrackscachelocationsanddirectsqueriestoGPUsalreadycontainingrelevantdata,dramaticallyreducingredundantcomputations.
Theseinnovationsproveparticularlyvaluableforspecificusecasesrequiringlargecontextwindows,suchascomplexchatbotinteractions,deepresearchapplications,andcoding
tasksinvolvingextensiverepositories.Dynamonotonlyoptimizescurrentworkloads,butdy-namicallyadaptsGPUrolesbetweenprefillanddecodephasesbasedonreal-timedemand,ensuringresourcesarecontinuouslyalignedwithactualneeds.
3
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
HuanggivespresentationonCUDA-X
ThebusinessvalueofDynamoemergeswhenexaminingitsimpactoninferenceefficiencyandre-
sourceutilization.DynamotargetsinferenceefficiencythroughoptimalGPUutilization,minimized
redundantcomputation,intelligentcaching,anddynamicresourceallocation.ThismeansthatusingDynamohelpsimprovetheeconomicsoflarge-scaleinferenceworkloads,particularlyforapplicationsrequiringextensivecontexthandling.AscomputationaldemandsforAIcontinuetogrow,Dynamo
providesorganizationswithaframeworkthatmakestokengenerationmoreeconomical,efficient,andenvironmentallysustainableatindustryscale.
Beyondcostreduction,Dynamoenablesorganizationstosignificantlyenhanceservicequalitythroughimprovedthroughputandreducedlatency,supportingmoreconcurrentuserswithexistinginfrastruc-ture.ThisscalabilityadvantagebecomesparticularlycriticalasAIadoptiongrowsexponentially—allow-ingbusinessestoaccommodateincreasingdemandwithoutproportionalinfrastructureexpansion.ForAI-as-a-Serviceproviders,thisdirectlyimpactsrevenuepotentialandcompetitivepositioning.Addition-ally,byextendingthepracticalusabilityoflargecontextwindowswithoutprohibitivecosts,Dynamo
enablesentirelynewclassesofAIapplicationsthatwerepreviouslyeconomicallyunfeasible,creatingopportunitiesforproductdifferentiationandnewmarketentry.AscomputationaldemandsforAgenticAIcontinuetogrowexponentiallybeyondinitialprojections,Dynamo’soptimizationapproachprovidesacrucialpathwayforsustainablescaling—helpingorganizationsmaximizereturnonAIinvestments,
whileminimizingoperationalcostsandenvironmentalimpact.
Despiteitspromisingbenefits,implementingDynamopresentssubstantialchallenges.Theframework’sdistributednatureintroducescomplexityinorchestrationandresourcemanagementacrossmultiplenodes.Ensuringoptimalhierarchicalcachemanagementwithoutlatencypenalties,balancingcompet-ingfactorsoflowlatencyandhighthroughput,andaccommodatingheterogeneousworkloadsrequiresophisticatedreal-timedecision-making.Organizationsmustensuresufficienthigh-performance
networking,GPUresources,andfaststoragesolutions,whileaddressingdataconsistencyconcerns
indynamicmulti-nodeenvironments.Additionally,theinitialinfrastructureinvestmentandscarcityofspecializedexpertiseindistributedsystems,GPUarchitecture,andAIinferenceoptimizationmaypres-entbarriers,particularlyforsmallerorganizations.
4
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
Nevertheless,DynamoexemplifiesNVIDIA’sstrategicshifttowardopeninnovationinsoftwareto
complementitshardwareleadership,withsourcecodeavailableonGitHubforcommunitycontribu-tionandadaptation.ThisframeworkdirectlysupportsNVIDIA’svisionofredefiningcomputingaroundtokengenerationefficiency,dramaticallyreducingthecostandpowerconsumptionrequiredforeachhigh-qualitytoken—essentialforscalable,economical,andenvironmentally-friendlyAIinferenceas
computationaldemandscontinuescalingexponentiallybeyondinitialprojections.
EXPANDINGDGXPORTFOLIO:FROMEDGETOENTERPRISE
AtGTC2025,NVIDIAintroducedanewlineinitsDGXfamily,AIsupercomputingsolutionsdesigned
specificallyforDeepLearning(DL),AI,andadvancedanalyticsworkloads.Atthehighend,NVIDIA
introducedtheDGXSuperPODequippedwithBlackwellUltraGPUs(specificallytheDGXGB300and
DGXB300systems),offeringunprecedentedcomputationalpowerforenterprisesrequiringscalableAIsupercomputingresources.ThisflagshipsolutionaddressesthegrowingdemandforinfrastructurecapableofhandlingincreasinglycomplexAIworkloadsatscale,eliminatingtheneedforremoteaccesstocentralizedresourcesformanyAIdevelopmentandinferencetasks.
Complementingtheselarge-scaledeployments,NVIDIAintroducedDGXSpark,previouslyknownasProjectDIGITS.ThiscompactAIsupercomputer,developedincollaborationwithMediaTekandpow-eredbytheGB10Blackwellchip,istailoredspecificallyfordevelopers,datascientists,andresearch-ers.ThecollaborationwithMediaTekbringsexpertiseinenergy-efficientchipdesign,enhancingDGXSpark’scapabilitiestoeffectivelysupportinferenceworkloadsattheedge.DGXSparkaimstodemoc-ratizeaccesstocutting-edgeAIcomputingpower,allowinguserstoprototype,fine-tune,andperforminferenceonlargeAImodelswithoutrelianceontraditionaldatacenterresources.Thissolutionis
particularlysuitedfordecentralizedlocations,enablingenhancedAIcapabilitiesinenvironmentswithspace,power,andlatencyconstraints.
ThecollaborationwithEquinixtolaunchtheInstantAIFactoryprovidesamanagedserviceoffering
fullyprovisionedAIfactoriespoweredbyBlackwellUltraDGXSuperPODs.Thisinnovativesolution
significantlyreducesimplementationbarriersfororganizationsseekingimmediateaccesstoenter-
prise-gradeAIinfrastructurewithoutthecomplexitiesofbuildingandmaintainingtheseenvironmentsthemselves.
WhiletheseadvancementspresentcompellingopportunitiesforacceleratingAIinnovationandreduc-inginfrastructurecomplexity,theycomewithimplementationchallenges.Organizationsmustnavi-
gatethecomplexityandcostofinitialdeployment,acquirespecializedskillsindistributedAIandedgecomputing,addressdatasecurityconcernsatdecentralizedlocations,andensureconsistentreliabilityacrossdiverseoperationalenvironments.Despitethesechallenges,NVIDIA’scomprehensiveportfoliodemonstratesastrategicvisionofAIinfrastructureasacohesiveecosystem,ratherthanisolatedde-ploymentmodels,positioningthecompanyasthefoundationalplatformfortheAIeconomy.
5
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
QUANTUMSUCCESS:THEHYBRIDCOMPUTINGIMPERATIVE
AtNVIDIA’sGTC2025QuantumDay,industryleadersrepresentingmajorquantumorganizationsconvergedonacommonmessage:quantumcomputing’ssuccessfuladoptionwilloccurthroughhybridintegrationwithclassicalcomputing,ratherthanasastandalonereplacement.Thishybridmodelisviewedbyleadingplayers,including
AmazonWebServices(AWS)andMicrosoft,asthemostfeasiblepathtowardcommercialsuccess.Huangadvisedthequantumcommunitytopositionquantumcomputingasacomplementaryextensionofclassicalcomputingtopreventstrategicpitfallssimilartothosefacedhistoricallybytechnologieslikemassivelyparallelcomputing.Thisstrategicapproachwillenableindustryplayerstotargetimmediateopportunitieswithpracticalapplications,whilesimultaneouslygeneratingsufficientrevenuetosustainlong-termResearchandDevelopment(R&D)investments,creatingasustainableinnovationecosystemthatcanmethodicallyadvancequantumcapabilitieswithoutfallingvictimtohypecyclesorunrealisticexpectations.
Thequantumcomputingindustryistransitioningfromfoundationalresearchintopracticalapplications,withnota-bleadvancementsinperformancebenchmarks.IonQrecentlyachieveda12%performanceenhancementinbloodpumpdynamicssimulation,whileQuantinuumcontinuessettingquantumvolumerecords.Nevertheless,substan-tialchallengespersistinerrorcorrection,scalability,andintegrationwithinexistingcomputationalinfrastructure.
Industryconsensussuggestsspecializedquantumapplicationscouldreachpracticaladoptionwithin5years,
whilecomprehensiveindustrytransformationmayrequireatleastadecade.Organizationsshouldidentifyspecificcomputationaltaskswherequantumoffersclearadvantages—suchasmaterialsscience,chemicalsimulations,op-timizationchallenges,andscientificresearch—whilecontinuingtouseclassicalcomputingforbroaderworkloads.
Forward-thinkingenterprisesshouldinitiatequantumreadinessassessments,identifyquantum-alignedusecasesrelevanttotheirbusinessgoals,anddevelophybridcomputingframeworks.Buildingcross-disciplinaryteamswithexpertiseinquantumphysics,high-performancecomputing,andtargetedapplicationswillbeessential.Strategicpartnershipswithquantumhardwarevendors,cloudplatforms,andsoftwaredeveloperswillenablecompaniestosecureearly-adopteradvantagesasthetechnologyevolves.
Thenextdecadewillbedefinednotbyquantumreplacingclassicalcomputing,butbyhoweffectivelyorganizationsintegratethesecomplementaryparadigms.Thosethatpositionthemselvesatthisintersection—understanding
boththelimitationsandpossibilitiesofquantumtechnologies—willgainsignificantcompetitiveadvantagesincomputation-intensiveindustries.
—MalikSaadi,VPofStrategicTechnologies
GTC’sinaugural
QuantumDay
6
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
NOTABLEHARDWAREANNOUNCEMENTS
NVIDIA’sdominanceintheAIdatacenterhasnotbeenthrownintoquestion,andthe
ambitiousroadmappresentedatGTCfurtherentrenchesthisposition.Theperformance
improvementstocome,andclarityaboutthecadenceofhardwarereleases,isappreciatedbyitsnetworkofcustomersandGTMpartners,whocanexpectannualhardwareupdates
PaulSchell
IndustryAnalyst
PaulSchell,IndustryAnalystatABIResearch,isresponsible forresearchfocusingon ArtificialIntelligence(AI)hardwareandchipsetswith theAI&MachineLearningResearchService,which
sitswithintheStrategic Technologiesteam.The burgeoningactivityaroundAImeanshisresearchcoversbothestablishedplayersandstartupsdevelopingproductsoptimizedforAIworkloads
forcloud,enterprise,androbotics.WhatevercomesnextintheworldofAIandacceleratedcomputing,weknowthatNVIDIA’ssupercomputers—soldasawholeanddisaggregatedformorepickycustomers,namelyhyperscalers—madeupofGPUs,interconnect,andnetwork-ingsolutions,willremainatthecuttingedge.Nonetheless,itwasinterestingtohearHuang’semphasisontheprogrammabilityofGPUs,whichformspartofthepicturewhenconsideringtheefficiencytrade-offwithApplication-SpecificIntegratedCircuits(ASICs)suchashyperscal-ers’in-housedesigns(thinkGoogle’sTensorProcessingUnit(TPU)andAWS’Inferentia).Whileapplication-specificsiliconhasbeenhonedtotackletransformernetwork-basedGenAI
workloads,tomorrow’sneuralnetworkcouldlookdifferent.Hardwaredevelopmentcycleslagbehindsuchdevelopments,whereastheinherentflexibilityofGPUsrequire“only”anupdat-edsoftwarelibrarytooptimizeforanothertypeofparallelprocessing—somethingNVIDIA’ssoftwareengineershavebeendoingforyears.
GPUS,CPUS,ANDSUPERCHIPSWEREONFULLDISPLAY
ConsciousofGPUs’energyappetite,efficiencyandcostpertokenunderscoreNVIDIA’smes-sagingaboutBlackwell’sreportedlypositiveramp-up,theexpectedimprovementsofBlack-wellUltralaterthisyear,andthe2026Rubinarchitectureinconjunctionwiththenextline
ofcustomArmNeoverseCentralProcessingUnits(CPUs)namedVera.Alsonotableisthe
doublingoftheGPUdensityofRubinUltra,plannedfor2H2027,whichwillhavefourreti-cle-sizedGPUdiesinthesamepackage.UnderpinningNVIDIA’scolossalUS$1trillionofdatacenterCAPEXby2028isthescalingofAIreasoningmodelsandtheconsiderablecomputeneededtocatertomoreintelligentAgenticAIsystems.
Whenunpackingwhat’sunderthehoodofthenewreferencedesigns,suchasNVL144,itisimportanttoconsiderthatNVIDIAcountsthenumberofGPUdies,notthenumberof“pack-aged”GPUs.ThefirstgenerationVeraRubinsystems,duein2026,willbecalledNVL144,
althoughthesystemissimilartoGB200NVL72—thesamerackand72GPUpackages.ThesamerackwillalsobeusedforthefortheGB200andGB300NVL72systems.Separately,
theupcomingB300NVL16willtakeoverfromtheB200HGXformfactorandcontinuetobeinterconnectedwiththein-houseNVLinkprotocol.ThenextrackdesignwillcomewiththeRubinUltraandwillfurtherincreasedensitybyintroducing144GPUpackagesintoasinglerackwithatotalof576GPUdies.
—PaulSchell,IndustryAnalyst
7
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
NVIDIAROLLSBACKSOFTWAREMONETIZATIONTOFOCUSONINFRASTRUCTUREDEMANDGENERATION
In2024,NVIDIAannouncedNVIDIAAIEnterprise,asoftwareplatformaimingtosupport
AImodelinferenceandacceleratedeploymentofapplicationsonNVIDIAhardware.This
ReeceHayden
PrincipalAnalyst
AspartofABIResearch’s strategictechnologiesteam,PrincipalAnalystReeceHayden leadstheArtificialIntelligence (AI)andMachineLearning (ML)researchservice.His primaryfocusisuncovering thetechnical,commercial, andeconomicopportunities inAIsoftwareandAImarkets. ReeceexploresAIsoftware acrossthecompletevaluechain,withacross-verticaland globalviewpoint,toprovidestrategicguidancefor,amongothers,enterprises,hardware andsoftwarevendors,hyper scalers,systemintegrators, andcommunicationservice providers.Reecepreviously workedinthedistributed& edgecomputeteam,where hesupportedclientsacrossvariousareas,includingenter- priseconnectivity(includingnetwork-as-a-service),
edgeAIplatforms,andthesemiconductormarket.
softwareplatformwaspositionedasademanddriverforhardwarebyreducingbarrierstoapplicationdeployment,butalsoamonetizationopportunityforNVIDIAasitisdelivered
asaSoftware-as-a-Service(SaaS)-basedsolutionwithacostofUS$4,500perGPUperyear.
OneyearonanditisclearthatmonetizingNVIDIAAIEnterprisehasbeende-prioritizedwithenergyfocusedonusingthisplatformandothersoftwaretoolstoacceleratedemandgen-
erationforNVIDIA’sAIinfrastructure.ThisisareturntoNVIDIA’straditionalbusinessmodelthathasleveragedtoolslikeCUDAXlibrariesandSoftwareDevelopmentKits(SDKs)tomakeiteasiertooptimizeAIprocessingonhardwareandbuildamoataroundtheirhardware
solution.NVIDIAAIEnterprisewillstillbemonetizedwiththeexistingSaaSmodelstillinplace,butitwillmostlybechanneledtocustomersaswhite-labeledsolutionsthroughpartners
likeAccenture,Amdocs,HewlettPackardEnterprise(HPE),andServiceNow.Althoughthesepartnerswill,mostlikely,takealotof“margin”throughthesewhite-labeledsolutions,NVIDIAwillbetheultimatewinner,asitwillfueldemandforitshighmarginAIinfrastructureandac-celeratedcompute.NVIDIA’smajorsoftwareannouncementsaligncloselywithitstraditional“infrastructuredemandgeneration”strategy.AstheAIhardwaremarketbecomeschalleng- ingmovingforwardwithmorecompetitivesolutionstargetinginferenceworkloads,itmakessenseforNVIDIAtoreturntoitstraditionalmodelfocusedonusingsoftwaretogenerate
demandforitsAIinfrastructure.
NVIDIAFENDSOFFCOMPETITORSBYPLACING“PARTNERS”FRONTANDCENTER
NVIDIA’scommercialmodelhasalwaysfocusedonhorizontalinnovationandverticalcom-mercializationthroughamaturechannelpartnershipecosystem.Thishasbeenasuccessfulapproach,todate,withOEMs,OriginalDesignManufacturers(ODMs),SystemIntegrators
(SIs),IndependentSoftwareVendors(ISVs),andverticalexpertsallplayingacriticalrole.
NVIDIA’sroadmapannouncementclearlysignalsthatvisibilityforitspartnersoutweighsthethreatofcompetitionfromtherestofthemarket.ThisroadmapvisibilityisafirstofitskindintheGPUmarketandisindicativeofhowNVIDIAseesitselfanditspartnersinthemarket.AlthoughthismovewillinvitecompetitiveR&Dfromtheusualsuspectsandnewentrants(especiallytargetinginferenceworkloads),itwillalsoactasabarriertomarketfor
competitors,aschannelpartnerswillmaptheirroadmaptoNVIDIAtoensureguaranteesof“best-in-class”solutions.Beyondhardware,NVIDIAshowcaseditsongoingcommitmenttosoftwarepartners,highlightingtheraftofchannelpartnersthathaveco-developedandwhite-labeledNVIDIAAIEnterprisesolutions.ThisapproachwillenableNVIDIA’spartnerstoleadthemarketinAgenticAI,byleveragingNIMsandNeMotosupportthebuildoutof
optimizedagenticsolutions.
8
GTC2025:REDEFININGAI’SCOMPUTATIONALHORIZONWITHTOKENECONOMY
GeForceRTX5090GPU,whichrunsontheBlackwellarchitecture
INFERENCETAKESCENTERSTAGE,ASAGENTICAIANDREASONINGMODELSCOMETOTHEFOREFRONTOFNVIDIA’STECHNOLOGYR&DAND
EVOLVINGCOMMERCIALSTRATEGY
GenAItechnologyandcommercialmaturityarepushingthemarketawayfromafocusontraining
bettermodelstowardusinginferencetocreateROI.Onthesurface,thistrendcreatesachallengeforNVIDIA.Marketsentimentwidelyviewsinferenceas“easy,”meaningthatitcanberunonlesscom-
pute-dense(expensive)AIinfrastructure,whichposesasignificantrisktoNVIDIA’sleadingAIinfrastruc-ture.Tochangethisnarrative,andplaceNVIDIA’sfull-stacksolutionatthecenteroftheAIinference
market,ittargetedtwokeyareas.
ThefirstwasfocusedonchangingthenarrativearoundAgenticAIandreasoningmodels.Market
hypearoundAgenticAIhasquicklygrown,fueledbytheemergenceofnovel(andhighlyefficient)
reasoningmodels(e.g.,DeepSeek-R1).Thesesmall,moreefficientmodelsthatarereportedlytrainedforafractionofthecostof“traditionalLargeLanguageModels(LLMs)”(e.g.,GPT-4.5)createdwide-
spreadskepticismthatlargeAIdatacentersorfactorieswithleading-edgeinfrastructurewillnotbenecessary,astrainingandinferencingdemandswillnotgrowasquicklyasfirstexpected.Tochangethisnarrativeandattempttorepositionitshardwaretoaddressinference(aswellastraining),NVIDIAshowcasedthatreasoningmodels(comparedtotraditionalone-shotLLMs)usefarmoretokensto
processpromptsgiventheirmulti-stagereasoning.ThissuggeststhatscaledAgenticAIframeworks(evenifbasedonsmallerindividualmodels)willrequireasmuch,ifnotmore,computecapacity.Thesecondwasseveralsoftwareannouncementsthatseektosupportinference,ratherthantraining
workloads.Thesemessages(alongsideothers)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同样本美甲店
- 医疗用品采购合同样本
- 化学助剂合同样本
- 北京市个人合同范例
- 焊接实训报告范文
- 2024年齐齐哈尔市建华区中华街道公益性岗位招聘笔试真题
- 功效检测合同标准文本
- 供水厂运营合同样本
- 保健加盟店合同样本
- 代理加盟协议合同标准文本
- 2024北京一零一中初二(下)期中数学试题及答案
- 2025-2030中国考试系统行业市场发展现状分析及发展趋势与投资前景研究报告
- GB/T 45456-2025包装折叠纸盒折痕挺度的测定
- 国企薪酬福利体系与市场化改革
- 2025年保安员职业技能考试笔试试题(700题)附答案
- 2025届江苏省江阴市四校高三下-第四次月考数学试题试卷
- 2025年04月国家税务总局税务干部学院公开招聘事业单位工作人员36人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年郑州理工职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- Unit 4 Healthy food B Lets learn(教学设计)-2024-2025学年人教PEP版(2024)英语三年级下册
- 《知不足而后进 望山远而力行》期中家长会课件
- 2024-2024年上海市高考英语试题及答案
评论
0/150
提交评论