




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
HowEdgeComputing,ArtificialIntelligence,andGenerativeAIarechangingthefutureofrestauranttechnology
©2024Cognizant
Abstract
Frequentchallengesfacedbytherestaurantindustrycanbecategorizedunderthreebroadlevelsegments,includinglowcustomerretention,
inefficientoperationsandinventorymanagementandhighlaborcost.
Lowcustomerretention:Therestaurantindustryishighlycompetitiveandfragmented,with
customershavingawiderangeofchoicesand
preferences.Thepercentageofcustomers
whoareloyaltoaspecificrestaurantbrandis
declining,whereasthosewhoswitchbrands
morethanonceamonthisontherise.Toretain
andattractcustomers,restaurantsneedtoofferpersonalizedandengagingexperiences,suchascustomizedmenus,recommendations,rewards,andfeedback.
Inefficientoperationsandinventorymanagement:
Therestaurantindustryfacesvariousoperationalchallenges,suchasoptimizingfoodquality
andsafety,reducingfoodwasteandspoilage,
managingsupplychainandinventory,and
complyingwithhealthandsafetyregulations.
Accordingtoareport,theaveragefoodwastageinrestaurantsis11%offoodpurchases,which
amountstosignificantlossesannually.To
improveoperationalefficiencyandprofitability,restaurantsneedtoleveragereal-timedataandanalytics,automateprocesses,andoptimize
resources.
2|©2024Cognizant
Highlaborcostandturnoverrates:Therestaurantindustryisoneofthemostlabor-intensivesectors.Accordingtoasurvey,98%ofoperatorssayhigherlaborcostsareanissuefortheirrestaurant.
ThispaperdiscusseshowEdgeComputing,
AI,andGenerativeAIcanhelpaddressthese
challengesbybringingcomputingpowerclosertowherethedataisgenerated,reducinglatency,andenablingfasterdecision-making.ItexplorestheadvantagesofEdgeComputing,theuseof
in-restaurantcloudtechnology,andthebenefitsofusingLargeLanguageModels(LLMs)onEdgedevices.Thepaperalsodiscussesthetechnicalchallengesthatareneededtoberesolved,
leveragingthemethodsformodelquantization.
Moreover,theindustrysuffersfromahighturnoverratewhichimpactsthequalityandconsistencyofserviceandincreasestrainingandhiringcosts.
3|©2024Cognizant
Introduction
Therestaurantindustryisundergoingadigital
transformation,drivenbytheneedtoenhance
customerexperiences,optimizeoperations,
andincreaserevenue.EdgeComputing,AI,and
GenerativeAIaresomeofthekeytechnologies
thatareenablingthistransformation.AccordingtoareportbyGrandViewResearch,theglobal
EdgeComputingmarketsizeisexpectedtoreach$155.90billionby3030,growingatacompound
annualgrowthrate(CAGR)of36.9%.
Thereportalsostatesthat,“ArtificialIntelligence(AI)integrationintotheEdgeenvironmentisprojected
todrivemarketgrowth.AnEdgeAIsystemis
estimatedtohelpbusinessesmakedecisionsinrealtimeinmilliseconds.Theneedtominimizeprivacy
concernsassociatedwhiletransmittinglarge
amountsofdata,aswellaslatencyandbandwidthissuesthatlimitanorganization’sdatatransmissioncapabilities,arefactorsprojectedtofuelmarket
growthinthecomingyears.”
GenerativeAI:GenerativeAIisabranchofAIthat
cangeneratenovelandrealisticcontent,suchas
images,text,music,orvideo,basedonexistingdata.
EdgeComputing:EdgeComputingistheideaof
doingcomputingactivitiesnearwherethedata
comesfrom,toreducethedelaybetweenthedataandthedecisions.Oneofthemaindifferences
betweenEdgeandCloudComputingisthelocationofdataprocessing.WhileCloudComputingrelies
oncentralizedserverstostoreandprocessdata,
EdgeComputingdistributesthedataprocessing
acrosslocaldevicesorserversthatareclosertothe
datasource.Thisreducesthelatency,bandwidth,
andprivacyissuesthatareassociatedwithCloud
Computing.EdgeComputingcanalsoenablemoreefficientandreliableAIapplicationsthatallowreal-timeornearreal-timedecisionmaking.
Restaurantsusein-restaurantCloudtechnologywithEdgeComputingtospeedupandensure
dataprocessingandsystemuptimeforin-storeapplications.
ThecomparisonbetweenEdgeandClouddeploymentsisshowninthepicturebelow.
EdgeQoSCloud
•LowLeveltask
•Memory•HighLeveltask
•LowLatencyGenAI/
•Applications
•LightweightModels
LLM•DataStorage•Asynchronous
•Latencyofflinetasks
•Power•LargeModels
Requirement•MoreComputing
•rputing•ConcurrencyResources
Diagram1:EdgevsCloud
In-restaurantcloudtechnologydrivenbyEdge
Computingcanhelprestaurantsprocessdata
fasterandmorereliablyandenhancesystem
uptime.Dataissynchronizedwiththecentralclouddatastoreandthein-storeapplicationscanswitchbetweenthein-storecloudandthepubliccloudasneeded.ThehybridEdgeinfrastructureblendsthepubliccloudandthein-storecloudandformsthebasisofthenewCloudComputingforrestaurantstoensurebusinesscontinuity.ByanalyzingdataattheEdgeinreal-timeornearreal-time,businessescantrainAImodelsandimprovetheperformanceofAIdrivenapplications.Someofthedecisions
thatcanhappenatthestorelevelare:
•Computervisiontechnology,GenerativeAI,
machinelearninganddeeplearningframeworksforAI-drivenpersonalization,in-restaurant
housekeeping,dynamicpricing,promotion,
inventory,andproductionoptimizationand
variousotherIoTdrivenoperationsthatusehugeamountofdataforpredictiveanalysis.
•Asmallandpowerfulin-storedevice,anexampleofEdgeComputing,bringscomputingpower
tothedatarequiredtoruntherestaurant
operations.Also,theAPIsinthepubliccloudthatareneededforrestaurantoperationsarecopiedatthein-storecloudtoenablefasterorder
managementandpaymentprocessing.TheseAPIswillkeeptherestaurantrunningevenwhenthereisnoconnectivity.
Thiskindofresilientandredundantarchitecturehelpsrestaurantsmaintainbusinesscontinuity,reliabilityinpaymentprocessing,whichreducesfinanciallossesandincreasescustomer
satisfactionduetofasterspeedanduptime.
EdgeComputingisessentialfortherapid
developmentofGenerativeAIasitsolves
theproblemsofreal-timeprocessing,lower
latency,andeffectivedatamanagement.Asthe
companiesdeployGenerativeAIsolutions,theywillhavetodealwiththeissuesoflong-termcost,dataprivacyandsecurity.EdgeComputinghelpsto
overcomethesechallengesandcleanuptheraw
databeforemovingthedatatothepubliccloudformorecostlyAItrainingoperations.
Pre-trainedmodel
Powerful
computation
Cloud
Largescaledataset
Lightweightmodel
Edgeserver
Finetuning
Generatedcontent
Enduserdevices
Userdata
Userdevice
Webbasedapps
Prompt
Diagram2:LogicalrepresentationofLLMModeldeploymentonEdgeandCloud
5|©2024Cognizant
HowEdgeComputingandGenAIcanimproverestaurantoperations
Basedonthisresearch,thefollowingbusinessmapdepictsthemodules(bluehighlighted),inwhichthecombinationofEdge,GenAIandTraditionalAIcanhaveconsiderableimpactonrestaurantoperations.
In-restaurant
FrontofhouseoperationsBackofhouseoperations
Order
management
Payment
Upsell/Crosssell
offer&couponmanagement
Loyalty
KitchenDisplaySystems
Delivery
ManagementSystem
Receipt
Management
Pricing/tax
POSReporting
Drive-Thru
Order
Queueing&Confirmation
Kiosk
Customer
RelationshipManagement
EmployeeClockIn/Out
Channel/ThirdParty
ServiceProviderIntegration
SocialProfileManagement
MultiChannelOrdering&
Mobility
EndofDayProcess
Inventory
Management
TimeKeeping&Payroll
CashandSalesReconciliation
PurchaseOrder
DigitalSignage
LaborScheduling
BOHReporting
StoreAsset
ManagementReconciliation
POS
ConfigurationManagement
EndofDayProcess
FoodSafety
&Waste
Management
Demand&Forecasting
Employee
management
Aboverestaurant
DataPolling&Delivery
DataAggregation&Reporting
ITServiceManagement
IdentityManagement&UserProvisioning
Corporate
MenuandRestaurantDataManagement
Menuengineering
CouponandOfferManagement
RestaurantDesign&Development/VisualMerchandising
LearningManagement
SupplyChainManagement
FranchiseeManagement
VendorManagement/SupplierSpecificationManagementSystem
CustomerRelationshipManagement
CustomercompliantManagement
InsightandAnalytics
Customer360
BrandingandMarketingStrategy
InfoSecurityManagement
BusinessProcessManagement
Finance
HumanResource
PublicRelations
Legal
CorporateProcurement
StoreAssetManagement
FacilitiesManagement
EmployeeServices
Diagram3:RestaurantBusinessMapwithGenAIopportunitieshighlighted.
6|©2024Cognizant
ReferenceArchitecture
Thefollowingarethekeycomponentsofthereferencearchitecture:
AGenAIcloudserverthatrunsthemodelsandapplicationsfortaskslikemenugeneration,
orderprediction,customersegmentation,etc.ThecloudserveralsokeepsandprocessesthedatafromtheEdgedevicesandsendsthemfeedbackandupdates.
AlocalnetworkofEdgedevicesthatoperatetheGenAImodelsandapplicationsatthe
restaurantlevel,suchaskiosks,tablets,cameras,speakers,etc.TheEdgedevicesusecompactAImodelstodotaskslikefacerecognition,voicerecognition,sentimentanalysis,etc.TheEdgedevicesalsotalktoeachotherandtothecloudserverviaWi-Fiorcellularconnection.
Asetofsensorsandactuatorsthatgatherdatafromthephysicalenvironment,suchas
temperature,humidity,noise,motion,etc.Thesensorsandactuatorsalsoregulatethephysicalaspectsoftherestaurant,suchaslighting,heating,ventilation,etc.
Thereferencearchitecturecanenablethefollowingexampleusecases:
•Acustomerwalksuptoakioskandisidentifiedbythefacerecognitionmodel.ThekioskshowsacustomizedmenucreatedbytheGenerativeAImodelbasedonthecustomer’spreferences,history,andcontext.Thecustomerordersusingvoicerecognitionandpaysusingbiometric
authentication.
•Atabletonatablesensesacustomerandturns
onthespeaker.Thespeakerwelcomesthe
customerandoffersasuggestioncreatedbytheGenerativeAImodelbasedonthecustomer’s
profile,mood,andtimeofday.Thecustomercantalkwiththespeakerusingnaturallanguage
andorder.
•Acameratracksthecrowdsizeandbehavior
intherestaurantandsendsthedatatothe
GenerativeAImodel.TheGenerativeAImodel
estimatesthedemandandsupplyoffooditemsandchangestheinventoryandproduction
accordingly.TheGenerativeAImodelalsoimprovesthestaffingandschedulingoftherestaurantbasedonthedata.
•Asensorrecordsthetemperatureandhumidityinthekitchenandsendsthedatatothe
GenerativeAImodel.TheGenerativeAImodel
managestheheatingandventilationsystemtokeeptheoptimalconditionsforfoodpreparationandsafety.TheGenerativeAImodelalsowarnsthestaffifanyabnormalityorhazard
isdetected.
7|©2024Cognizant
TechnicalArchitecture
LargeLanguageModels(LLMs)onEdgeDevices:
LLMsonEdgeDevicescanprovidemorespeed,
betterprivacyandsecurity,andonlineandofflinefunctionalityHowever,therearesomechallengesthatneedtoberesolved,includinghardwarelimits,energyuse,maintenance,andethicsissues
Quantization:QuantizationisamethodtoshrinkthemodelsizeandmakeitmoreefficientforuseonEdgedevicesItusesatechniquethatlowerstheprecisionofnumericalvaluestolowerthecomputationaland
memoryrequirementsofAImodelsQuantization
canbeappliedatdifferentlevels,suchasweights,activations,oroutputsQuantizationcanalso
beperformedatdifferentstages,suchasduring
training,aftertraining,orduringinference
Quantizationcanimpacttheaccuracy,speed,andsizeofAImodels
BusinessDrivers
Providesrealtime
insightsfromedgetocentralizedsites
SecureDevOps
managementacrossrestaurantsites
Reducing
maintenancecost
Restaurant
Local
Dashboard
EdgeAl
Application
SensorData
Edge
Management
Abovestore
感
SensorDataStream
Edge
Management
ContainerImages
Q
Secrets
DevOps
Management
AlOps
Management
DataLake
MLModelTraining
Hybirdcloudmanagement
Diagram4:TechnicalReferenceView
8|©2024Cognizant
TheGenerativeAIcloudserveristhecentralcomponentofthearchitecture,asithoststhemainmodelsandapplicationsforrestaurantmanagementandoptimization.ThecloudserverusesavarietyofAItechniques,suchasnaturallanguageprocessing,computervision,machinelearning,andGenerativeAI,tocreateandimprovethesolutionsfortherestaurant.ThecloudserveralsocommunicateswiththeEdgedevicesviaAPIsorMQTTmessages,sendingthemfeedback,updates,andcommands.
TheEdgedevicesaretheperipheralcomponentsofthearchitecture,astheyruntheGenerativeAImodels
andapplicationsattherestaurantlevel.TheEdgedevicesusequantizedAImodelstoperformtasksthat
requirelowlatency,highprivacy,orofflineavailability,suchasfacerecognition,voicerecognition,sentimentanalysis,etc.TheEdgedevicesalsocommunicatewitheachotherandwiththesensorsandactuatorsvia
Bluetooth,Zigbee,orWi-Fi,exchangingdataandinformation.
Thesensorsandactuatorsarethephysicalcomponentsofthearchitecture,astheycollectandcontrol
datafromtheenvironment.Thesensorsandactuatorsusesimpleprotocols,suchasGPIO,I2C,orSPI,to
connectwiththeEdgedevices,sendingthemsignalsandreceivinginstructions.ThesensorsandactuatorsalsoenabletheGenAImodelsandapplicationstointeractwiththephysicalaspectsoftherestaurant,suchaslighting,heating,ventilation,etc.
9|©2024Cognizant
Technologyoptions
GoogleCoral:Thisisaplatformthatoffersarangeofproducts,suchasadevelopmentboard,aUSBaccelerator,andasystem-on-module,whichcan
runTensorFlowLitemodelsattheEdge.Itcan
beusedasanEdgedevicetoenableGenerative
AIcapabilitiessuchasfacedetection,object
recognition,andsentimentanalysisforQSRkiosksandotherrestaurantdevices.SomeadvantagesofGoogleCoralareitseaseofuse,scalability,
andintegrationwithGoogleCloudservices.Somedisadvantagesareitslimitedsupportforother
frameworksandlanguages,itsdependencyonGoogle’secosystem,anditsnewand
evolvingstatus.
NVIDIAJetsonNano:Thisisapotentandenergy-
efficientplatformthatcanrunmultipleneural
networksinparallelandprocesshigh-resolution
datafrommultiplesensors.Itcanbeusedasan
EdgedevicetoboostGenerativeAItaskssuchas
computervision,naturallanguageprocessing,
andspeechrecognitionforQSRkiosksandother
restaurantdevices.SomeadvantagesofNVIDIA
JetsonNanoareitshighperformance,lowpower
consumption,andcompatibilitywithpopular
frameworksandtools.Somedisadvantagesareitshighercost,complexity,andlearningcurve,aswellasitspotentialoverheatingandinstabilityissues.
RaspberryPi:Thisisalow-cost,small,and
adaptablesingle-boardcomputerthatcanrun
Linux-basedoperatingsystemsandsupport
variousprogramminglanguages.ItcanbeusedasanEdgedevicetohostGenAImodelsand
applicationsforQSRkiosksandotherrestaurantdevices.SomeadvantagesofRaspberryPiareitscost-effectiveness,mobility,versatility,andlargecommunitysupport.Somedisadvantagesareitslimitedprocessingpower,memory,andstorage,aswellasitsrelianceonexternalperipheralsandpowersources.
GoogleAnthos:Thisisaplatformthatenablesthedeploymentandmanagementofcloud-native
applicationsacrossdifferentenvironments,suchason-premises,publiccloud,orEdgedevices.It
canbeusedasanEdgedevicetorunGenerativeAImodelsandapplicationsforQSRkiosksand
otherrestaurantdeviceswithconsistentpolicies
andsecurity.SomeadvantagesofGoogleAnthosareitsportability,scalability,andintegrationwithGoogleCloudservices.Somedisadvantages
areitshighcost,complexity,anddependency
onGoogle’secosystem.GoogleAnthossupportsKubernetes,whichisaframeworkthatoffers
variousoptionsforquantization,suchasoperator-levelquantization,model-levelquantization,and
graph-levelquantization.
Thetechnologychoicesdescribedabovehavedifferentimplicationsforquantization:
GoogleCoral:ThisdevicehasadedicatedTPU,
whichmeansthatitcanrunTensorFlowLite
modelsattheEdgewithhighspeedandlow
latency.Therefore,quantizationisrequiredfor
GoogleCoral,asitcanenablethedevicetorun
themodelsontheTPU.However,quantization
canalsolimittheflexibilityandcompatibility
ofGoogleCoral,asitcanrestrictthechoiceof
frameworksandlanguages.GoogleCoralsupportsTensorFlowLite,whichisaframeworkthatoffers
variousoptionsforquantization,suchasfullintegerquantization,floatfallbackquantization,and
hybridquantization.
NVIDIAJetsonNano:ThisdevicehasapowerfulGPU,whichmeansthatitcanrunhigh-resolutionandparallelAImodelseffectively.Therefore,
quantizationmaynotbeneededforNVIDIA
JetsonNano,asitcanhandlethecomputationalandmemorydemandsoflargemodels.
However,quantizationcanstillbebeneficialforNVIDIAJetsonNano,asitcanreducethepowerconsumptionandincreasethebatterylifeofthedevice.NVIDIAJetsonNanosupportsTensorFlow,PyTorch,andONNX,whichareframeworks
thatoffervariousoptionsforquantization,suchasquantization-awaretraining,quantization
emulation,andquantizationexport.
RaspberryPi:ThisdevicehasalimitedCPUand
GPU,whichmeansthatitcannotruncomplicatedorlargeAImodelsefficiently.Therefore,
quantizationcanbehelpfulforRaspberryPi,as
itcanreducethemodelsizeandimprovethe
inferencespeed.However,quantizationcan
alsocauseaccuracyloss,whichcanaffectthe
performanceofGenerativeAItasks.Raspberry
PisupportsTensorFlowLite,whichisaframeworkthatoffersvariousoptionsforquantization,suchaspost-trainingquantization,dynamicrange
quantization,andinteger-onlyquantization.
GoogleAnthos:Thisisaplatformthatallowsthe
deploymentandmanagementofAIapplications
acrossdifferentcloudprovidersandon-premise
environments.Therefore,quantizationcanbe
usefulforGoogleAnthos,asitcanenablethe
portabilityandscalabilityofAImodelsacross
heterogeneoushardwareandsoftwareplatforms.However,quantizationcanalsointroducesome
challengesforGoogleAnthos,suchasensuringtheconsistencyandcompatibilityofquantizedmodelsacrossdifferentframeworksandlanguages.
GoogleAnthossupportsTensorFlow,PyTorch,
andScikit-learn,whichareframeworksthatoffervariousoptionsforquantization,suchasmixed
precisiontraining,quantization-awarefine-tuning,andmodeloptimizationtools.
ApplicationofEdgeandGenerativeAIusecasesintypesofrestaurants
Finedining
•GenerativeAIcanmakenewanddifferentrecipes,menus,andpairingswiththeingredients,cuisines,seasons,andoccasions.Forexample,aGenerativeAImodelcancreateadishwithunusualtastesandtextures,orawinethat
matchesadessert.
•GenerativeAIcanalsomakethefoodlookbetterbymakingartisticand
attractivedesigns,colors,andarrangements.Forexample,aGenerativeAImodelcanuseedibleflowers,sauces,andgarnishestomakeamorevisuallyappealingeffect.
•EdgeComputingcanspeedupandimprovethedataprocessingandcommunicationbetweentherestaurant’sfront-endandbackend,andthecloud.Forexample,anEdgedevicecanhandlethecustomer’sreservation,order,feedback,andpayment,andsendthemtothekitchen,themanagement,andtheloyaltyprogramrightaway.
•EdgeComputingcanalsoprotectthecustomer’sdataandfollowdatarules.Forexample,anEdgedevicecanhideandchangethecustomer’spersonalinformation,liketheirname,email,phonenumber,andpaymentdetails,beforesendingthemtothecloud.
•EdgeComputingcanalsolettherestaurantworkofflineorwithlowconnection,whichcan
maketheservicemoreavailableandreliable.Forexample,anEdgedevicecankeepthe
importantdataandfunctionslocallyandsynchronizethemwiththecloudwhentheconnectionisback.
WithGenerativeAIandEdgeComputing,finediningrestaurantscangivemorenew,fine,andcustomexperiencesforthecustomers,andfaster,correct,andlower-costoperationsfortherestaurants.
Quickserverestaurant
•Usingcomputervisionandnaturallanguageprocessingtoidentifythecustomer’sface,voice,andorder,andsuggestcustomizedrecommendationsandoffers.
•Usingmachinelearningandreinforcementlearningtochange
themenu,theprices,andthepromotionsbasedonthedemand,theseason,andthecompetition.
•Usingsensorsandactuatorstocheckandmanagethe
temperature,thehumidity,andthehygieneofthefoodandtheequipment,andtonotifythestaffofanyissuesoranomalies.
•Usingchatbotsandvirtualassistantstohelpthecustomersandtheemployeeswiththeirquestions,complaints,andsuggestions,andprovidefeedbackandguidance.
•Usingdataanalyticsanddashboardingtomeasureand
showtheperformance,thetrends,andtheoutcomesoftherestaurant,andspotareasforimprovementandinnovation.
11|©2024Cognizant
12|©2024Cognizant
ApplicationofEdgeandGenAIUseCasesinkeyrestaurantfunctions
QSRkiosks
•GenerativeAIcancreatetailor-mademenus,deals,andsuggestionsbasedonthe
customer’sprefrences,behavior,location,andtimeoftheday.Forinstance,aGenerativeAImodelcanrecommendalow-caloriesaladforacustomerwhocaresabouttheirhealthoracombomealforafamilywithchildren.
•GenerativeAIcanalsoimprovetheuserinterfaceandinteractionofthekiosksbycreatingnaturallanguageresponses,voicesynthesis,facialexpressions,andgestures.For
example,aGenerativeAImodelcanwelcomethecustomer,taketheirorder,verifytheirpayment,andexpresstheirgratitudefortheirvisit.
•EdgeComputingcanenablequickerandmoredependabledataprocessingand
communicationbetweenthekiosksandthekitchen,aswellasthecloud.Forinstance,anEdgedevicecanprocessthecustomer’sorder,transmitittothekitchen,andupdatetheinventoryandsalesdatainreal-time.
•EdgeComputingcanalsoprovidemoreprivacyandsecurityforthecustomer’sdata,as
wellascompliancewithdataregulations.Forinstance,anEdgedevicecanencryptand
anonymizethecustomer’spersonalinformation,suchastheirname,email,phonenumber,andpaymentdetails,beforesendingittothecloud.
•EdgeComputingcanalsoallowthekioskstoworkofflineorinlowconnectivityscenarios,whichcanenhancetheavailabilityandresilienceoftheservice.Forinstance,anEdge
devicecanstoretheessentialdataandfunctionslocallyandsynchronizethemwiththecloudwhentheconnectionisrestored.
ByusingGenerativeAIandEdgeComputing,QSRkioskscanoffermorepersonalized,
interactive,andconvenientexperiencesforthecustomers,aswellasmoreefficient,precise,andcost-effectiveoperationsfortherestaurants.
13|©2024Cognizant
RestaurantPOS
Thepoint-of-sale(POS)systemisakeyelementof
anyrestaurant,asithandlesthepayments,orders,
inventory,andcustomerdata.However,traditional
POSsystemsareoftenold-fashioned,slow,andpronetomistakesandbreaches.ByusingEdgeComputingandGenerativeAI,restaurantscanupgradetheir
POSsystemsintosmart,fast,andsecureplatformsthatcanimprovethecustomerexperienceand
businessefficiency.
Quickerandmoredependabledataprocessingandcommunication:EdgeComputingcansolvethe
latencyandbandwidthproblemsthatoftenimpact
cloud-basedPOSsystems,especiallyduringbusy
timesornetworkoutages.Byprocessingthedata
locallyontheEdgedevices,thePOSsystemcan
workquickerandmoredependably,ensuringsmoothpaymentsandorders.
Betterprivacyandsecurityofcustomerdata:EdgeComputingcanalsosafeguardcustomerdatafromunauthorizedaccessorleakage,asitreducesthe
exposureofsensitiveinformationtothecloudortheinternet.Byencryptingandanonymizingthedata
ontheEdgedevices,thePOSsystemcanfollow
dataregulationsandavoididentitytheft,fraud,orcyberattacks.
Improvedcustomizationandinteractionofcustomerservice:GenerativeAIcanenablethePOSsystem
toprovidemorepersonalizedandengaging
serviceforcustomers,byusingnaturallanguage
processing,computervision,andspeechrecognitiontounderstandandrespondtocustomerneedsand
preferences.Forexample,aGenerativeAImodelcanwelcomethecustomerbytheirname,offerthem
relevantdiscountsorloyaltyrewards,recommenditemsbasedontheirorderhistoryordietary
limitations,andgeneratenaturalandhuman-likeconversations.
Enhancedefficiencyandaccuracyofrestaurant
operations:GenerativeAIcanalsohelpthePOS
systemoptimizerestaurantoperations,byusing
dataanalytics,machinelearning,andreinforcementlearningtomonitorandimprovetheperformance,
trends,andoutcomes.Forexample,aGenerativeAImodelcantrackandmanagetheinventory,supplychain,andwaste,predictthedemand,adjustthe
pricesandpromotions,andprovidefeedbackandsuggestionsforthestaff.
14|©2024Cognizant
OneexampleofhowGenerativeAI,AIandEdgeComputingcanhelpimproverestaurantPOSisasfollows:
•Acustomerwalksintoafast-foodrestaurant
andscansaQRcodeonthetablewiththeir
smartphone.TheQRcodedirectsthemtoa
webappthatservesasaPOSsystemforthe
restaurant.ThewebapprunsontheEdge
device,whichisasmallserverlocatedinthe
restaurant.TheEdgedeviceprocessesthedatalocallyandcommunicateswiththecloudonly
whennecessary,ensuringfastandreliableservice.
•Thewebappgreetsthecustomerbytheirnameandshowsthemamenuthatiscustomized
basedontheirpreviousorders,preferences,andallergies.Thecustomercanusevoiceortexttoplacetheirorder,andthewebappusesnaturallanguageprocessingandspeechrecognition
tounderstandandconfirmtheir
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制具加工合同标准文本
- 2024年龙岩市上杭县客家木偶艺术传习中心招聘笔试真题
- 2024年赣州市全南县住房和城乡建设局聘用人员招聘笔试真题
- 助残居家服务合同样本
- 医院改造合同标准文本
- 办公设备技术转让合同样本
- 北京广告牌制作合同样本
- 劳务施工采购合同样本
- 医院改建教堂合同标准文本
- 医院业务合同标准文本
- 室颤的抢救与护理课件
- 红楼梦讲书演讲稿(18篇)
- 经典500家庭经典杂文
- 零工派工单(可用)
- 中国宫腔镜诊断与手术临床实践指南(2023年)
- 中越收入核算比较研究
- 水利水电工程专业毕业设计
- 大学英语四级翻译课件
- 【南通蓝海半导体公司成本管理问题及解决策略】7000字论文
- 小学生三年级家长会课件
- 职业卫生技术服务机构培训讲课
评论
0/150
提交评论