【高知特Cognizant】2024边缘计算AI与生成式AI如何变革未来餐饮科技报告_第1页
【高知特Cognizant】2024边缘计算AI与生成式AI如何变革未来餐饮科技报告_第2页
【高知特Cognizant】2024边缘计算AI与生成式AI如何变革未来餐饮科技报告_第3页
【高知特Cognizant】2024边缘计算AI与生成式AI如何变革未来餐饮科技报告_第4页
【高知特Cognizant】2024边缘计算AI与生成式AI如何变革未来餐饮科技报告_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

HowEdgeComputing,ArtificialIntelligence,andGenerativeAIarechangingthefutureofrestauranttechnology

©2024Cognizant

Abstract

Frequentchallengesfacedbytherestaurantindustrycanbecategorizedunderthreebroadlevelsegments,includinglowcustomerretention,

inefficientoperationsandinventorymanagementandhighlaborcost.

Lowcustomerretention:Therestaurantindustryishighlycompetitiveandfragmented,with

customershavingawiderangeofchoicesand

preferences.Thepercentageofcustomers

whoareloyaltoaspecificrestaurantbrandis

declining,whereasthosewhoswitchbrands

morethanonceamonthisontherise.Toretain

andattractcustomers,restaurantsneedtoofferpersonalizedandengagingexperiences,suchascustomizedmenus,recommendations,rewards,andfeedback.

Inefficientoperationsandinventorymanagement:

Therestaurantindustryfacesvariousoperationalchallenges,suchasoptimizingfoodquality

andsafety,reducingfoodwasteandspoilage,

managingsupplychainandinventory,and

complyingwithhealthandsafetyregulations.

Accordingtoareport,theaveragefoodwastageinrestaurantsis11%offoodpurchases,which

amountstosignificantlossesannually.To

improveoperationalefficiencyandprofitability,restaurantsneedtoleveragereal-timedataandanalytics,automateprocesses,andoptimize

resources.

2|©2024Cognizant

Highlaborcostandturnoverrates:Therestaurantindustryisoneofthemostlabor-intensivesectors.Accordingtoasurvey,98%ofoperatorssayhigherlaborcostsareanissuefortheirrestaurant.

ThispaperdiscusseshowEdgeComputing,

AI,andGenerativeAIcanhelpaddressthese

challengesbybringingcomputingpowerclosertowherethedataisgenerated,reducinglatency,andenablingfasterdecision-making.ItexplorestheadvantagesofEdgeComputing,theuseof

in-restaurantcloudtechnology,andthebenefitsofusingLargeLanguageModels(LLMs)onEdgedevices.Thepaperalsodiscussesthetechnicalchallengesthatareneededtoberesolved,

leveragingthemethodsformodelquantization.

Moreover,theindustrysuffersfromahighturnoverratewhichimpactsthequalityandconsistencyofserviceandincreasestrainingandhiringcosts.

3|©2024Cognizant

Introduction

Therestaurantindustryisundergoingadigital

transformation,drivenbytheneedtoenhance

customerexperiences,optimizeoperations,

andincreaserevenue.EdgeComputing,AI,and

GenerativeAIaresomeofthekeytechnologies

thatareenablingthistransformation.AccordingtoareportbyGrandViewResearch,theglobal

EdgeComputingmarketsizeisexpectedtoreach$155.90billionby3030,growingatacompound

annualgrowthrate(CAGR)of36.9%.

Thereportalsostatesthat,“ArtificialIntelligence(AI)integrationintotheEdgeenvironmentisprojected

todrivemarketgrowth.AnEdgeAIsystemis

estimatedtohelpbusinessesmakedecisionsinrealtimeinmilliseconds.Theneedtominimizeprivacy

concernsassociatedwhiletransmittinglarge

amountsofdata,aswellaslatencyandbandwidthissuesthatlimitanorganization’sdatatransmissioncapabilities,arefactorsprojectedtofuelmarket

growthinthecomingyears.”

GenerativeAI:GenerativeAIisabranchofAIthat

cangeneratenovelandrealisticcontent,suchas

images,text,music,orvideo,basedonexistingdata.

EdgeComputing:EdgeComputingistheideaof

doingcomputingactivitiesnearwherethedata

comesfrom,toreducethedelaybetweenthedataandthedecisions.Oneofthemaindifferences

betweenEdgeandCloudComputingisthelocationofdataprocessing.WhileCloudComputingrelies

oncentralizedserverstostoreandprocessdata,

EdgeComputingdistributesthedataprocessing

acrosslocaldevicesorserversthatareclosertothe

datasource.Thisreducesthelatency,bandwidth,

andprivacyissuesthatareassociatedwithCloud

Computing.EdgeComputingcanalsoenablemoreefficientandreliableAIapplicationsthatallowreal-timeornearreal-timedecisionmaking.

Restaurantsusein-restaurantCloudtechnologywithEdgeComputingtospeedupandensure

dataprocessingandsystemuptimeforin-storeapplications.

ThecomparisonbetweenEdgeandClouddeploymentsisshowninthepicturebelow.

EdgeQoSCloud

•LowLeveltask

•Memory•HighLeveltask

•LowLatencyGenAI/

•Applications

•LightweightModels

LLM•DataStorage•Asynchronous

•Latencyofflinetasks

•Power•LargeModels

Requirement•MoreComputing

•rputing•ConcurrencyResources

Diagram1:EdgevsCloud

In-restaurantcloudtechnologydrivenbyEdge

Computingcanhelprestaurantsprocessdata

fasterandmorereliablyandenhancesystem

uptime.Dataissynchronizedwiththecentralclouddatastoreandthein-storeapplicationscanswitchbetweenthein-storecloudandthepubliccloudasneeded.ThehybridEdgeinfrastructureblendsthepubliccloudandthein-storecloudandformsthebasisofthenewCloudComputingforrestaurantstoensurebusinesscontinuity.ByanalyzingdataattheEdgeinreal-timeornearreal-time,businessescantrainAImodelsandimprovetheperformanceofAIdrivenapplications.Someofthedecisions

thatcanhappenatthestorelevelare:

•Computervisiontechnology,GenerativeAI,

machinelearninganddeeplearningframeworksforAI-drivenpersonalization,in-restaurant

housekeeping,dynamicpricing,promotion,

inventory,andproductionoptimizationand

variousotherIoTdrivenoperationsthatusehugeamountofdataforpredictiveanalysis.

•Asmallandpowerfulin-storedevice,anexampleofEdgeComputing,bringscomputingpower

tothedatarequiredtoruntherestaurant

operations.Also,theAPIsinthepubliccloudthatareneededforrestaurantoperationsarecopiedatthein-storecloudtoenablefasterorder

managementandpaymentprocessing.TheseAPIswillkeeptherestaurantrunningevenwhenthereisnoconnectivity.

Thiskindofresilientandredundantarchitecturehelpsrestaurantsmaintainbusinesscontinuity,reliabilityinpaymentprocessing,whichreducesfinanciallossesandincreasescustomer

satisfactionduetofasterspeedanduptime.

EdgeComputingisessentialfortherapid

developmentofGenerativeAIasitsolves

theproblemsofreal-timeprocessing,lower

latency,andeffectivedatamanagement.Asthe

companiesdeployGenerativeAIsolutions,theywillhavetodealwiththeissuesoflong-termcost,dataprivacyandsecurity.EdgeComputinghelpsto

overcomethesechallengesandcleanuptheraw

databeforemovingthedatatothepubliccloudformorecostlyAItrainingoperations.

Pre-trainedmodel

Powerful

computation

Cloud

Largescaledataset

Lightweightmodel

Edgeserver

Finetuning

Generatedcontent

Enduserdevices

Userdata

Userdevice

Webbasedapps

Prompt

Diagram2:LogicalrepresentationofLLMModeldeploymentonEdgeandCloud

5|©2024Cognizant

HowEdgeComputingandGenAIcanimproverestaurantoperations

Basedonthisresearch,thefollowingbusinessmapdepictsthemodules(bluehighlighted),inwhichthecombinationofEdge,GenAIandTraditionalAIcanhaveconsiderableimpactonrestaurantoperations.

In-restaurant

FrontofhouseoperationsBackofhouseoperations

Order

management

Payment

Upsell/Crosssell

offer&couponmanagement

Loyalty

KitchenDisplaySystems

Delivery

ManagementSystem

Receipt

Management

Pricing/tax

POSReporting

Drive-Thru

Order

Queueing&Confirmation

Kiosk

Customer

RelationshipManagement

EmployeeClockIn/Out

Channel/ThirdParty

ServiceProviderIntegration

SocialProfileManagement

MultiChannelOrdering&

Mobility

EndofDayProcess

Inventory

Management

TimeKeeping&Payroll

CashandSalesReconciliation

PurchaseOrder

DigitalSignage

LaborScheduling

BOHReporting

StoreAsset

ManagementReconciliation

POS

ConfigurationManagement

EndofDayProcess

FoodSafety

&Waste

Management

Demand&Forecasting

Employee

management

Aboverestaurant

DataPolling&Delivery

DataAggregation&Reporting

ITServiceManagement

IdentityManagement&UserProvisioning

Corporate

MenuandRestaurantDataManagement

Menuengineering

CouponandOfferManagement

RestaurantDesign&Development/VisualMerchandising

LearningManagement

SupplyChainManagement

FranchiseeManagement

VendorManagement/SupplierSpecificationManagementSystem

CustomerRelationshipManagement

CustomercompliantManagement

InsightandAnalytics

Customer360

BrandingandMarketingStrategy

InfoSecurityManagement

BusinessProcessManagement

Finance

HumanResource

PublicRelations

Legal

CorporateProcurement

StoreAssetManagement

FacilitiesManagement

EmployeeServices

Diagram3:RestaurantBusinessMapwithGenAIopportunitieshighlighted.

6|©2024Cognizant

ReferenceArchitecture

Thefollowingarethekeycomponentsofthereferencearchitecture:

AGenAIcloudserverthatrunsthemodelsandapplicationsfortaskslikemenugeneration,

orderprediction,customersegmentation,etc.ThecloudserveralsokeepsandprocessesthedatafromtheEdgedevicesandsendsthemfeedbackandupdates.

AlocalnetworkofEdgedevicesthatoperatetheGenAImodelsandapplicationsatthe

restaurantlevel,suchaskiosks,tablets,cameras,speakers,etc.TheEdgedevicesusecompactAImodelstodotaskslikefacerecognition,voicerecognition,sentimentanalysis,etc.TheEdgedevicesalsotalktoeachotherandtothecloudserverviaWi-Fiorcellularconnection.

Asetofsensorsandactuatorsthatgatherdatafromthephysicalenvironment,suchas

temperature,humidity,noise,motion,etc.Thesensorsandactuatorsalsoregulatethephysicalaspectsoftherestaurant,suchaslighting,heating,ventilation,etc.

Thereferencearchitecturecanenablethefollowingexampleusecases:

•Acustomerwalksuptoakioskandisidentifiedbythefacerecognitionmodel.ThekioskshowsacustomizedmenucreatedbytheGenerativeAImodelbasedonthecustomer’spreferences,history,andcontext.Thecustomerordersusingvoicerecognitionandpaysusingbiometric

authentication.

•Atabletonatablesensesacustomerandturns

onthespeaker.Thespeakerwelcomesthe

customerandoffersasuggestioncreatedbytheGenerativeAImodelbasedonthecustomer’s

profile,mood,andtimeofday.Thecustomercantalkwiththespeakerusingnaturallanguage

andorder.

•Acameratracksthecrowdsizeandbehavior

intherestaurantandsendsthedatatothe

GenerativeAImodel.TheGenerativeAImodel

estimatesthedemandandsupplyoffooditemsandchangestheinventoryandproduction

accordingly.TheGenerativeAImodelalsoimprovesthestaffingandschedulingoftherestaurantbasedonthedata.

•Asensorrecordsthetemperatureandhumidityinthekitchenandsendsthedatatothe

GenerativeAImodel.TheGenerativeAImodel

managestheheatingandventilationsystemtokeeptheoptimalconditionsforfoodpreparationandsafety.TheGenerativeAImodelalsowarnsthestaffifanyabnormalityorhazard

isdetected.

7|©2024Cognizant

TechnicalArchitecture

LargeLanguageModels(LLMs)onEdgeDevices:

LLMsonEdgeDevicescanprovidemorespeed,

betterprivacyandsecurity,andonlineandofflinefunctionalityHowever,therearesomechallengesthatneedtoberesolved,includinghardwarelimits,energyuse,maintenance,andethicsissues

Quantization:QuantizationisamethodtoshrinkthemodelsizeandmakeitmoreefficientforuseonEdgedevicesItusesatechniquethatlowerstheprecisionofnumericalvaluestolowerthecomputationaland

memoryrequirementsofAImodelsQuantization

canbeappliedatdifferentlevels,suchasweights,activations,oroutputsQuantizationcanalso

beperformedatdifferentstages,suchasduring

training,aftertraining,orduringinference

Quantizationcanimpacttheaccuracy,speed,andsizeofAImodels

BusinessDrivers

Providesrealtime

insightsfromedgetocentralizedsites

SecureDevOps

managementacrossrestaurantsites

Reducing

maintenancecost

Restaurant

Local

Dashboard

EdgeAl

Application

SensorData

Edge

Management

Abovestore

SensorDataStream

Edge

Management

ContainerImages

Q

Secrets

DevOps

Management

AlOps

Management

DataLake

MLModelTraining

Hybirdcloudmanagement

Diagram4:TechnicalReferenceView

8|©2024Cognizant

TheGenerativeAIcloudserveristhecentralcomponentofthearchitecture,asithoststhemainmodelsandapplicationsforrestaurantmanagementandoptimization.ThecloudserverusesavarietyofAItechniques,suchasnaturallanguageprocessing,computervision,machinelearning,andGenerativeAI,tocreateandimprovethesolutionsfortherestaurant.ThecloudserveralsocommunicateswiththeEdgedevicesviaAPIsorMQTTmessages,sendingthemfeedback,updates,andcommands.

TheEdgedevicesaretheperipheralcomponentsofthearchitecture,astheyruntheGenerativeAImodels

andapplicationsattherestaurantlevel.TheEdgedevicesusequantizedAImodelstoperformtasksthat

requirelowlatency,highprivacy,orofflineavailability,suchasfacerecognition,voicerecognition,sentimentanalysis,etc.TheEdgedevicesalsocommunicatewitheachotherandwiththesensorsandactuatorsvia

Bluetooth,Zigbee,orWi-Fi,exchangingdataandinformation.

Thesensorsandactuatorsarethephysicalcomponentsofthearchitecture,astheycollectandcontrol

datafromtheenvironment.Thesensorsandactuatorsusesimpleprotocols,suchasGPIO,I2C,orSPI,to

connectwiththeEdgedevices,sendingthemsignalsandreceivinginstructions.ThesensorsandactuatorsalsoenabletheGenAImodelsandapplicationstointeractwiththephysicalaspectsoftherestaurant,suchaslighting,heating,ventilation,etc.

9|©2024Cognizant

Technologyoptions

GoogleCoral:Thisisaplatformthatoffersarangeofproducts,suchasadevelopmentboard,aUSBaccelerator,andasystem-on-module,whichcan

runTensorFlowLitemodelsattheEdge.Itcan

beusedasanEdgedevicetoenableGenerative

AIcapabilitiessuchasfacedetection,object

recognition,andsentimentanalysisforQSRkiosksandotherrestaurantdevices.SomeadvantagesofGoogleCoralareitseaseofuse,scalability,

andintegrationwithGoogleCloudservices.Somedisadvantagesareitslimitedsupportforother

frameworksandlanguages,itsdependencyonGoogle’secosystem,anditsnewand

evolvingstatus.

NVIDIAJetsonNano:Thisisapotentandenergy-

efficientplatformthatcanrunmultipleneural

networksinparallelandprocesshigh-resolution

datafrommultiplesensors.Itcanbeusedasan

EdgedevicetoboostGenerativeAItaskssuchas

computervision,naturallanguageprocessing,

andspeechrecognitionforQSRkiosksandother

restaurantdevices.SomeadvantagesofNVIDIA

JetsonNanoareitshighperformance,lowpower

consumption,andcompatibilitywithpopular

frameworksandtools.Somedisadvantagesareitshighercost,complexity,andlearningcurve,aswellasitspotentialoverheatingandinstabilityissues.

RaspberryPi:Thisisalow-cost,small,and

adaptablesingle-boardcomputerthatcanrun

Linux-basedoperatingsystemsandsupport

variousprogramminglanguages.ItcanbeusedasanEdgedevicetohostGenAImodelsand

applicationsforQSRkiosksandotherrestaurantdevices.SomeadvantagesofRaspberryPiareitscost-effectiveness,mobility,versatility,andlargecommunitysupport.Somedisadvantagesareitslimitedprocessingpower,memory,andstorage,aswellasitsrelianceonexternalperipheralsandpowersources.

GoogleAnthos:Thisisaplatformthatenablesthedeploymentandmanagementofcloud-native

applicationsacrossdifferentenvironments,suchason-premises,publiccloud,orEdgedevices.It

canbeusedasanEdgedevicetorunGenerativeAImodelsandapplicationsforQSRkiosksand

otherrestaurantdeviceswithconsistentpolicies

andsecurity.SomeadvantagesofGoogleAnthosareitsportability,scalability,andintegrationwithGoogleCloudservices.Somedisadvantages

areitshighcost,complexity,anddependency

onGoogle’secosystem.GoogleAnthossupportsKubernetes,whichisaframeworkthatoffers

variousoptionsforquantization,suchasoperator-levelquantization,model-levelquantization,and

graph-levelquantization.

Thetechnologychoicesdescribedabovehavedifferentimplicationsforquantization:

GoogleCoral:ThisdevicehasadedicatedTPU,

whichmeansthatitcanrunTensorFlowLite

modelsattheEdgewithhighspeedandlow

latency.Therefore,quantizationisrequiredfor

GoogleCoral,asitcanenablethedevicetorun

themodelsontheTPU.However,quantization

canalsolimittheflexibilityandcompatibility

ofGoogleCoral,asitcanrestrictthechoiceof

frameworksandlanguages.GoogleCoralsupportsTensorFlowLite,whichisaframeworkthatoffers

variousoptionsforquantization,suchasfullintegerquantization,floatfallbackquantization,and

hybridquantization.

NVIDIAJetsonNano:ThisdevicehasapowerfulGPU,whichmeansthatitcanrunhigh-resolutionandparallelAImodelseffectively.Therefore,

quantizationmaynotbeneededforNVIDIA

JetsonNano,asitcanhandlethecomputationalandmemorydemandsoflargemodels.

However,quantizationcanstillbebeneficialforNVIDIAJetsonNano,asitcanreducethepowerconsumptionandincreasethebatterylifeofthedevice.NVIDIAJetsonNanosupportsTensorFlow,PyTorch,andONNX,whichareframeworks

thatoffervariousoptionsforquantization,suchasquantization-awaretraining,quantization

emulation,andquantizationexport.

RaspberryPi:ThisdevicehasalimitedCPUand

GPU,whichmeansthatitcannotruncomplicatedorlargeAImodelsefficiently.Therefore,

quantizationcanbehelpfulforRaspberryPi,as

itcanreducethemodelsizeandimprovethe

inferencespeed.However,quantizationcan

alsocauseaccuracyloss,whichcanaffectthe

performanceofGenerativeAItasks.Raspberry

PisupportsTensorFlowLite,whichisaframeworkthatoffersvariousoptionsforquantization,suchaspost-trainingquantization,dynamicrange

quantization,andinteger-onlyquantization.

GoogleAnthos:Thisisaplatformthatallowsthe

deploymentandmanagementofAIapplications

acrossdifferentcloudprovidersandon-premise

environments.Therefore,quantizationcanbe

usefulforGoogleAnthos,asitcanenablethe

portabilityandscalabilityofAImodelsacross

heterogeneoushardwareandsoftwareplatforms.However,quantizationcanalsointroducesome

challengesforGoogleAnthos,suchasensuringtheconsistencyandcompatibilityofquantizedmodelsacrossdifferentframeworksandlanguages.

GoogleAnthossupportsTensorFlow,PyTorch,

andScikit-learn,whichareframeworksthatoffervariousoptionsforquantization,suchasmixed

precisiontraining,quantization-awarefine-tuning,andmodeloptimizationtools.

ApplicationofEdgeandGenerativeAIusecasesintypesofrestaurants

Finedining

•GenerativeAIcanmakenewanddifferentrecipes,menus,andpairingswiththeingredients,cuisines,seasons,andoccasions.Forexample,aGenerativeAImodelcancreateadishwithunusualtastesandtextures,orawinethat

matchesadessert.

•GenerativeAIcanalsomakethefoodlookbetterbymakingartisticand

attractivedesigns,colors,andarrangements.Forexample,aGenerativeAImodelcanuseedibleflowers,sauces,andgarnishestomakeamorevisuallyappealingeffect.

•EdgeComputingcanspeedupandimprovethedataprocessingandcommunicationbetweentherestaurant’sfront-endandbackend,andthecloud.Forexample,anEdgedevicecanhandlethecustomer’sreservation,order,feedback,andpayment,andsendthemtothekitchen,themanagement,andtheloyaltyprogramrightaway.

•EdgeComputingcanalsoprotectthecustomer’sdataandfollowdatarules.Forexample,anEdgedevicecanhideandchangethecustomer’spersonalinformation,liketheirname,email,phonenumber,andpaymentdetails,beforesendingthemtothecloud.

•EdgeComputingcanalsolettherestaurantworkofflineorwithlowconnection,whichcan

maketheservicemoreavailableandreliable.Forexample,anEdgedevicecankeepthe

importantdataandfunctionslocallyandsynchronizethemwiththecloudwhentheconnectionisback.

WithGenerativeAIandEdgeComputing,finediningrestaurantscangivemorenew,fine,andcustomexperiencesforthecustomers,andfaster,correct,andlower-costoperationsfortherestaurants.

Quickserverestaurant

•Usingcomputervisionandnaturallanguageprocessingtoidentifythecustomer’sface,voice,andorder,andsuggestcustomizedrecommendationsandoffers.

•Usingmachinelearningandreinforcementlearningtochange

themenu,theprices,andthepromotionsbasedonthedemand,theseason,andthecompetition.

•Usingsensorsandactuatorstocheckandmanagethe

temperature,thehumidity,andthehygieneofthefoodandtheequipment,andtonotifythestaffofanyissuesoranomalies.

•Usingchatbotsandvirtualassistantstohelpthecustomersandtheemployeeswiththeirquestions,complaints,andsuggestions,andprovidefeedbackandguidance.

•Usingdataanalyticsanddashboardingtomeasureand

showtheperformance,thetrends,andtheoutcomesoftherestaurant,andspotareasforimprovementandinnovation.

11|©2024Cognizant

12|©2024Cognizant

ApplicationofEdgeandGenAIUseCasesinkeyrestaurantfunctions

QSRkiosks

•GenerativeAIcancreatetailor-mademenus,deals,andsuggestionsbasedonthe

customer’sprefrences,behavior,location,andtimeoftheday.Forinstance,aGenerativeAImodelcanrecommendalow-caloriesaladforacustomerwhocaresabouttheirhealthoracombomealforafamilywithchildren.

•GenerativeAIcanalsoimprovetheuserinterfaceandinteractionofthekiosksbycreatingnaturallanguageresponses,voicesynthesis,facialexpressions,andgestures.For

example,aGenerativeAImodelcanwelcomethecustomer,taketheirorder,verifytheirpayment,andexpresstheirgratitudefortheirvisit.

•EdgeComputingcanenablequickerandmoredependabledataprocessingand

communicationbetweenthekiosksandthekitchen,aswellasthecloud.Forinstance,anEdgedevicecanprocessthecustomer’sorder,transmitittothekitchen,andupdatetheinventoryandsalesdatainreal-time.

•EdgeComputingcanalsoprovidemoreprivacyandsecurityforthecustomer’sdata,as

wellascompliancewithdataregulations.Forinstance,anEdgedevicecanencryptand

anonymizethecustomer’spersonalinformation,suchastheirname,email,phonenumber,andpaymentdetails,beforesendingittothecloud.

•EdgeComputingcanalsoallowthekioskstoworkofflineorinlowconnectivityscenarios,whichcanenhancetheavailabilityandresilienceoftheservice.Forinstance,anEdge

devicecanstoretheessentialdataandfunctionslocallyandsynchronizethemwiththecloudwhentheconnectionisrestored.

ByusingGenerativeAIandEdgeComputing,QSRkioskscanoffermorepersonalized,

interactive,andconvenientexperiencesforthecustomers,aswellasmoreefficient,precise,andcost-effectiveoperationsfortherestaurants.

13|©2024Cognizant

RestaurantPOS

Thepoint-of-sale(POS)systemisakeyelementof

anyrestaurant,asithandlesthepayments,orders,

inventory,andcustomerdata.However,traditional

POSsystemsareoftenold-fashioned,slow,andpronetomistakesandbreaches.ByusingEdgeComputingandGenerativeAI,restaurantscanupgradetheir

POSsystemsintosmart,fast,andsecureplatformsthatcanimprovethecustomerexperienceand

businessefficiency.

Quickerandmoredependabledataprocessingandcommunication:EdgeComputingcansolvethe

latencyandbandwidthproblemsthatoftenimpact

cloud-basedPOSsystems,especiallyduringbusy

timesornetworkoutages.Byprocessingthedata

locallyontheEdgedevices,thePOSsystemcan

workquickerandmoredependably,ensuringsmoothpaymentsandorders.

Betterprivacyandsecurityofcustomerdata:EdgeComputingcanalsosafeguardcustomerdatafromunauthorizedaccessorleakage,asitreducesthe

exposureofsensitiveinformationtothecloudortheinternet.Byencryptingandanonymizingthedata

ontheEdgedevices,thePOSsystemcanfollow

dataregulationsandavoididentitytheft,fraud,orcyberattacks.

Improvedcustomizationandinteractionofcustomerservice:GenerativeAIcanenablethePOSsystem

toprovidemorepersonalizedandengaging

serviceforcustomers,byusingnaturallanguage

processing,computervision,andspeechrecognitiontounderstandandrespondtocustomerneedsand

preferences.Forexample,aGenerativeAImodelcanwelcomethecustomerbytheirname,offerthem

relevantdiscountsorloyaltyrewards,recommenditemsbasedontheirorderhistoryordietary

limitations,andgeneratenaturalandhuman-likeconversations.

Enhancedefficiencyandaccuracyofrestaurant

operations:GenerativeAIcanalsohelpthePOS

systemoptimizerestaurantoperations,byusing

dataanalytics,machinelearning,andreinforcementlearningtomonitorandimprovetheperformance,

trends,andoutcomes.Forexample,aGenerativeAImodelcantrackandmanagetheinventory,supplychain,andwaste,predictthedemand,adjustthe

pricesandpromotions,andprovidefeedbackandsuggestionsforthestaff.

14|©2024Cognizant

OneexampleofhowGenerativeAI,AIandEdgeComputingcanhelpimproverestaurantPOSisasfollows:

•Acustomerwalksintoafast-foodrestaurant

andscansaQRcodeonthetablewiththeir

smartphone.TheQRcodedirectsthemtoa

webappthatservesasaPOSsystemforthe

restaurant.ThewebapprunsontheEdge

device,whichisasmallserverlocatedinthe

restaurant.TheEdgedeviceprocessesthedatalocallyandcommunicateswiththecloudonly

whennecessary,ensuringfastandreliableservice.

•Thewebappgreetsthecustomerbytheirnameandshowsthemamenuthatiscustomized

basedontheirpreviousorders,preferences,andallergies.Thecustomercanusevoiceortexttoplacetheirorder,andthewebappusesnaturallanguageprocessingandspeechrecognition

tounderstandandconfirmtheir

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论