




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ExecutiveSummary
In2023,ITU-RissuedtheIMT-2030frameworkhighlightingsustainability,security,andresilience,
connectingtheunconnected,andubiquitousintelligenceasoverarchingaspectswhichactasdesignprinciples
commonlyapplicabletoallusagescenarios.InanotherrecommendationaboutthefuturedevelopmentofIMTfor
2030andbeyond,ITU-RmentionsthatquantumtechnologywithrespecttotheRANisapotentialtechnologyto
ensuresecurity,andresiliencewhenallowingforalegitimateexchangeofsensitiveinformationthroughnetwork
entities.Therefore,thetargetisbecomingmoreclearertoapplyquantumtechnologyinachievingsecureand
resilienceinthe6thgeneration(6G)communicationandbeyond.Tothisend,inthisannuallyrevisedwhitepaper,
weintroduceresearchprogressinapplyingquantuminformationtechnologies(QITs)tocommunicationand
networkandcomputingoverthepastyearandproposesomeexpectationsofquantumtechnologyresearchin2024.
Chapter2focusesonquantumsecurecommunicationaimingatsafeguardingcriticalinformationbyapplying
quantummechanisms.Theintroductionstartswithvarioustheoriesandexperimentscontinuouslycarriedoutin
quantumkeydistribution(QKD),quantumrandomnumbergenerator(QRNG),andquantuminformationnetwork
(QIN),followedbystate-of-the-artstandardizationactivitiesforQKDallovertheworld.Intheimplicationsfor6G,
quantumencryptiondemonstrationdeployedontheinternetofvehicles;integratedcontinuousvariableQKD
(CV-QKD)withG.698.4device;anddeployingquantumcryptographyinthe6Gnetworkareintroduced
respectively.
Chapter3givesinsightintotheresearchofhowtosatisfythedramaticallyincreasedcommunicationsystem
performanceandrichdiversityofinnovativeservicesexpectedby6Gbyapplyingquantumcomputing.Firstly,
computingscenariosandkeyissuesforcommunicationareanalyzed,includingsignalprocessing,network
optimization,serviceprocessing,andnetworkintelligentization.Secondly,a"Classical+Quantum"hybrid
computingplatformwitharobustcomputationalfoundationisproposedtoprovidecomputationalsupportservices
tailoredtodifferentdomains,facilitatingresearchinnovationandproductimplementation.Thirdly,theimplications
ofquantumcomputingfor6Gareintroducedwiththreeexamples,whichapplyquantumcomputingtosolve
classicalcommunicationissues,respectively.
1/35
Basedonthebarrier-breakingachievementsin2023,2024willprobablymarkasignificantyearforquantum
computingtechnology,fromwhenthefieldofquantumcomputingisexpectedtotransitionfromphysicalqubitsto
error-correctinglogicquantumbits,andanti-quantumcryptographyresearchisexpectedtospeedupaswell.
2/35
TableofContents
ExecutiveSummary........................................................................................................................................................1
1.Introduction...............................................................................................................................................................4
2.QuantumCommunicationandNetwork..............................................................................................................6
2.1.KeyTechnologies........................................................................................................................................6
2.1.1.QuantumKeyDistribution...................................................................................................................6
2.1.2.QuantumRandomNumberGenerator.................................................................................................8
2.1.3.QuantumInformationNetwork............................................................................................................9
2.2.StandardizationActivitiesforQKD..........................................................................................................10
2.2.1.ChineseStandardizationProgress......................................................................................................10
2.2.2.InternationalStandardizationProgress..............................................................................................12
2.3.Implicationsfor6G.....................................................................................................................................16
2.3.1.QuantumEncryptionintheInternetofVehicles...............................................................................16
2.3.2.QuantumEncryptionIntegrationwithBearerNetworkEquipment..................................................17
2.3.3.QuantumCommunicationSecurity....................................................................................................18
3.QuantumComputing.............................................................................................................................................20
3.1.ComputingScenariosandKeyIssuesforCommunication................................................................20
3.1.1.SignalProcessing...............................................................................................................................20
3.1.2.NetworkOptimization........................................................................................................................21
3.1.3.ServiceProcessing..............................................................................................................................22
3.1.4.NetworkIntelligentization.................................................................................................................22
3.2.QuantumHybridHeterogeneousComputing................................................................................................23
3.3.Implicationsfor6G........................................................................................................................................26
3.3.1.Single-CellMassiveMIMOAntennaOptimization...........................................................................26
3.3.2.MIMOBeamSelectionofMultipleCellular......................................................................................28
3.3.3.PhaseCorrectionofMillimeterWaveSignals...................................................................................31
4.FutureExpectation.....................................................................................................................................................34
5.Acknowledgement.....................................................................................................................................................35
3/35
1.Introduction
Thescopeofthisannuallyrevisedwhitepaperistointroducethelatestresearchprogressaboutquantum
informationtechnologies(QITs)fulfillingstringentdemandsofcommunicationandcomputingenvisagedin6Gor
beyond6G.InadditiontobenefitsexpectedfromQITstocommunicationandnetworkandcomputing,thisversion
of2024whitepaperproposessomeexpectationsofquantumtechnologyresearchin2024.
Chapter2.QuantumCommunicationandNetwork
Chapter2focusesonquantumsecurecommunicationaimingatsafeguardingcriticalinformationbyapplying
quantummechanisms.
In2023,varioustheoriesandexperimentshavecontinuouslybeencarriedoutinthefollowingkeytechnologies.
Forquantumkeydistribution(QKD),progresshasbeenmadeinnewprotocolsandclassicalquantum
co-transmissionstudies,etc.,andtheperformanceofQKDsystemshasbeenfurtherimproved.Quantumrandom
numbergenerator(QRNG)technologyiscurrentlybeingdevelopedandimprovedtoachievemoreefficientand
stableQRNGs.Manylaboratoriesandresearchinstituteshaveconductedanumberofexperimentstoverifythe
feasibilityandstabilityofquantumInformationNetwork(QIN).
AboutthestandardizationactivitiesforQKD,majorstandardizationorganizationshaveactivelycarriedoutthe
preparationofQKDrelatedstandards,coveringterminologydefinitions,applicationscenariosandrequirements,
networkarchitecture,equipmenttechnicalrequirements,QKDsecurity,testingandevaluationmethods,andother
aspects.
Inthelast,theimplicationsofquantumtechnologiesfor6Garediscussedfromthefollowingthreeaspects:
quantumencryptiondemonstrationdeployedontheinternetofvehicles;integratedcontinuousvariableQKD
(CV-QKD)withG.698.4devicetoconvergeQKDintoclassicalcommunicationnetworkandthusmakefulluseof
existingtelecominfrastructure;anddeployingquantumcryptographyinthe6Gnetworktoachievetheoverall
securitymanagementofthecommunicationsystemareintroduced.
Chapter3.QuantumComputing
Tosatisfythedramaticallyincreasedcommunicationsystemperformanceandrichdiversityofinnovativeservices
4/35
expectedby6G,Chapter3givesinsightintotheresearchofhowtoenhancecommunicationbyapplyingquantum
computing.
Firstly,consideringthattheessenceofcommunicationisaseriesofmathematicalcalculations,ahierarchical
communicationnetworkfromacomputingperspectiveisdescribedtofacilitatetheanalysisofcomputingscenarios
andkeyissuesforcommunicationincludingsignalprocessing,networkoptimization,serviceprocessing,and
networkintelligentization.
Secondly,a"Classical+Quantum"hybridcomputingplatformwitharobustcomputationalfoundationisproposed
toprovidecomputationalsupportservicestailoredtodifferentdomains,facilitatingresearchinnovationandproduct
implementation.Especially,thearchitecturedesignofthishybridcomputingplatformconsidersprinciplesand
conceptsofmodularity,standardization,widecompatibility,autonomoussecurity,andintelligenceefficiency.
Thirdly,theimplicationsofquantumcomputingfor6Gareintroducedwiththreeexamples,whichapplyquantum
computingtosolveclassicalcommunicationissues,respectively.Thethreeexamplesinclude:solvingsingle-cell
massiveMIMOantennaoptimizationbyusingtheFilteringVariationalQuantumAlgorithm(FVQE),solving
MIMObeamselection(MBS)bydesignedquantumalgorithmsbasedonCoherentIsingmachines(CIM),solving
phasecorrectionofmillimeterwavesignalsbyapplyingaphaseoffsetcorrectionmodelobtainedwithQuantum
SupportVectorMachine(QSVM)algorithmontheterminalsideandthusreducingreferencesignalingoverheads.
Chapter4.FutureExpectation
Inthelastquarterof2023,wewitnessedanindustrymilestoneinthequantumarea,i.e.,breakingthe1,000-qubit
barrier,givingquantumcomputersmorecomputingpowerthaneverbefore.Meanwhile,specialistsfromacademia
createdaquantumcomputerwiththelargest-evernumberoflogicalquantumbitsi.e.,48logicalqubits,wherein
thelogicalqubitsratherthanthehardware-basedqubitsarepromisingtoreducethemassiveamountsof
error-correctingsufferedbyquantumcomputers.Consequently,2024willprobablymarkasignificantyearfor
quantumcomputingtechnology,fromwhenthefieldofquantumcomputingisexpectedtotransitionfromphysical
qubitstoerror-correctinglogicquantumbits,andanti-quantumcryptographyresearchisexpectedtospeedupas
well.
5/35
2.QuantumCommunicationandNetwork
2.1.KeyTechnologies
2.1.1.QuantumKeyDistribution
Quantumcommunicationisbasedonquantumsuperpositionorentanglementtorealizekeydistributionor
informationtransmission,whichisunconditionallysecureatthetheoreticallevel.Quantumkeydistribution
(QKD)isthemostdevelopedquantumcommunicationtechnologybasedonthebasicprinciplesofquantum
mechanics,combinedwiththeencryptionmethodof"oneencryptionatatime"totransferthekeybetween
communicationusers.
In2023,variousQKDtheoriesandexperimentshavecontinuouslybeencarriedout,progresshasbeenmadeinnew
protocolsandclassicalquantumco-transmissionstudies,etc.,andtheperformanceofQKDsystemshasbeen
furtherimproved.AjointteamledbyTsinghuaUniversitygaveasecurityproofofthedevice-independentQKD
(DI-QKD)protocolbylinkingcomplementaritytoquantumnonlocalityandprovidedanewtheoreticaltoolforthe
practicalimplementationofDI-QKD1.AjointteamledbytheAustralianNationalUniversity(ANU)proposeda
measurementDI-QKDprotocolthatrequiresthepreparationofhigh-dimensionalquantumstatestobemeasured
usingthecoherenttotalphotonnumbermethod,andsimulationsshownthatitcanbreakthePLOBlimitatshorter
distancesthanTwin-Fieldprotocolswhenencodedina7-dimensionalstate2.Acollaborativeeffortspearheadedby
theChinaAcademyofTelecommunicationsResearch(CATR)hassuccessfullydemonstratedaremarkabletotal
transmissiondatacapacityof1Tbpswithinanopticaltransportnetwork.Thisachievementwasrealizedover
100.96kmthroughco-fibertransmissionemployingfew-modefiber,generatingaquantumsecuritykeyrate(SKR)
of2.7kbps3.QKDexperimentsusingsolid-statesingle-photonemittersareattractingincreasingattentiondueto
theirrapidlyimprovingperformanceandcompatibilitywithfuturequantumnetworks.Thejointteamledby
Heriot-WattUniversity(UK)conductedQKDexperimentsusingInGaAsquantumdotsasasingle-photonsource,
generatingafinitekeyof13kbpsat100km,inone-minuteacquisitiontime4.Theseresearchresultsarehelpfulin
exploringQKDapplicationsandrealizinglarge-scaleQKDnetwork.
1/10.1103/PhysRevLett.131.140801
2/10.1038/s41534-023-00698-5
3/10.1364/OL.500406
4/10.1038/s41467-023-39219-5
6/35
Currently,quantumcommunicationsystems,relyingonQKDandothertechnicalsolutions,havebeen
commerciallylaunchedandimplementedbothdomesticallyandinternationally.Nonetheless,commercialQKD
systemsstillencounternumerouschallengesconcerningsecurekeyrates,transmissiondistances,devicesize,and
highcosts.IncommercialQKDsystems,transmissionisoftenachievedusingprepare-and-measureQKD,which
canbefurtherclassifiedintotwotypes:continuousvariableQKD(CV-QKD)anddiscretevariableQKD
(DV-QKD).
TheadvantageofCV-QKDisthatitcouldachievehighSKRovermetrotransmissiondistancesusingtheclassical
communicationdetectionschemes.In2023,ShanxiUniversityadoptedthediscretemodulationCV-QKDto
generate2.11MbpsSKRover80km5.ShanghaiJiaoTongUniversityusedatransmitter-sidelightsource
integrationsystemtogenerate0.75MbpsSKRat50km6.TheTechnicalUniversityofDenmarkuseda
receiver-sideintegratedschemesystemtoachieve300MbpsSKRat10km7.TheUniversityofWaterloogavea
securityproofofthefinitekeylengthofthediscretemodulationCV-QKDandexperimentallydemonstratedthat
theQKDtransmissiondistancecanbelongerthan72kmwith1012keylength8.
TheDV-QKDexperimentalsystemhasundergonecontinuousdevelopment,resultingincertainenhancementsto
boththeSKRandtransmissiondistance.In2023,thegroupofappliedphysicsfromGenevarealizedaSKRof64
Mbpsover10kmviatime-binencodingQKDusingmultipixelSNSPDs9.TheresearchteamledbyUniversityof
ScienceandTechnologyofChinamadeachievementsonbothaspects,takingadvantageofmultipixelSNSPDs,a
new-recordSKRof115.8Mbpsover10kmfiberchannelwasobtainedusingadeceptivestatebasedBB84QKD
protocol10;adoptingthe3-intensitysending-or-not-sendingTF-QKD,relay-lessQKDwasrealizedovera1002km
fiberchannel.Thesestudiesdemonstratedthatcurrenttechniquescansatisfytheencryptionrequirementsforhigh
bandwidthcommunicationsandthefeasibilityinlongdistancecommunications.
ForQKDindustrialization,low-cost,mass-manufacturedandpracticalQKDdevicesarerequired.Froma
commercialutilizationperspective,thecoredevicesofquantumcommunication,includingtheQKDencoderand
5/10.1364/OL.492082
6/10.1364/PRJ.473328
7/abs/2305.19642
8/10.1103/PRXQuantum.4.040306
9/10.1038/s41566-023-01168-2
10/10.1038/s41566-023-01166-4
7/35
decoder,aremovingtowardsminiaturizationandcost-effectiveness.NationalInformationOptoelectronics
InnovationCenterfromChinaInformationandCommunicationTechnologiesGroupCorporationdeveloped
silicon-basedpolarizationstatemodulatoranddemodulator.Relyingonthetwomodules,thequbit-basedclock
synchronizationandchip-basedpolarizationcompensationweredemonstratedover150kmdistancetoachieve
866bpsSKR11.ResearchersattheUniversityofGeneva,Switzerland,andtheInstituteofPhotonicsand
Nanotechnology,Italy,demonstratedachip-basedQKDsystemusingasilicon-basedtransmitterchipsupporting
high-speedmodulationandapolarization-independentlow-lossreceiverchipinaluminumborosilicateglass,to
achievea1.3kbpsover151km12.
2.1.2.QuantumRandomNumberGenerator
QuantumRandomNumberGenerator(QRNG)isadevicethatutilizestheprinciplesofquantumphysicsto
generatetruerandomnumbers.Unliketraditionalrandomnumbergenerators,QRNGgeneratestruerandom
numbersbasedonquantumopticalprinciples,suchasvacuumstatenoise,quantumphasenoiseoflaser
spontaneousradiation,andphotonnumberstatistics.Itstandsasthesolegenuinelytheoreticallydefensiblerandom
numbergeneratortodate,leveragingquantummechanicaluncertaintytoguaranteethegenerationofhighly
unpredictableanduncorrelatedrandomnumbers.QRNGhasimportantapplications.Incryptography,truerandom
numbersarecrucialforkeygeneration,encryptionalgorithmsandauthentication,etc.QRNGcanprovidehigher
securityagainstpasswordcracking.However,itshouldbenotedthatQRNGonlyguaranteesthetruerandomness
ofthegeneratedsequencesanddoesnotincludethesecurityofthedistributionprocess.
QRNGtechnologyiscurrentlybeingdevelopedandimproved.Manyresearchinstitutesandcompaniesare
committedtoresearchinganddevelopingmoreefficientandstableQRNGs.In2023,researchersfromajointteam
ledbyGhentUniversityexperimentallydemonstratedanultra-fastrandomnumbergenerationrateof100Gbit/s,
settinganewrecordofanorderofmagnitudeincreaseintherateofQRNGbasedonvacuumfluctuation13.
QuantumDice(UK)announcedthelaunchofitslatestgenerationofAPEXQRNGwithpost-processingrandom
numbergenerationratesofupto7.5Gbps14,whichcanalsobeintegratedintoexistinginfrastructuresandhave
highsecurityfeatures.TheGermanFederalMinistryofEducationandResearchfundedtheChip-BasedQuantum
11/10.1364/PRJ.482942
12/10.1364/PRJ.481475
13/10.1103/PRXQuantum.4.010330
14
/quantum-dice-launches-the-new-generation-of-apex-the-worlds-fastest-quantum-random
-number-generator-enabling-trusted-cybersecurity-for-enterprise-applications/
8/35
RandomNumberDevicesproject15,whichwilldevelopahigh-speedgenerationofrandomnumbersbasedonthe
quantumphotoniceffectswithinacompactchip,meetingtheCommonCriteriaforITproductsecurity.Withthe
furtherdevelopmentofquantumtechnology,itisexpectedthatQRNGswillbeutilizedinawiderrangeof
applicationsandcontributesignificantlytoinformationsecurityandscientificresearch.
2.1.3.QuantumInformationNetwork
QuantumInformationNetworks(QIN)isacommunicationnetworksystembasedontheprinciplesofquantum
physics.Itutilizeskeytechnologiessuchasquantumentanglementmanipulation,quantumteleportation,quantum
relay,etc.,aimingatrealizingthefunctionsofquantumlong-distancecommunication,quantumcomputation,and
quantuminformationinterconnectionnetwork.QINcurrentlystandsasaresearchhotspotwithinthequantum
informationfield,representingtheforefrontofdevelopmentinbothcommunicationandcomputationforthefuture.
Inrecentyears,manycountrieshavebeenactivelypromotingtheresearchandapplicationofquantuminformation
networks.Manylaboratoriesandresearchinstituteshaveconductedanumberofexperimentstoverifythe
feasibilityandstabilityofQIN.In2023,researchersattheUniversityofScienceandTechnologyofChinaand
PekingUniversityrealized51-qubitentanglementontheZuchongzhisuperconductingquantumcomputerplatform,
usinghigh-fidelityparallelquantumgates,andrealized51-qubitone-dimensionaland30-qubittwo-dimensional
clusterstatesandachievedfidelitiesof0.637 ± 0.030and0.671 ± 0.006,respectively16.AjointteamfromPeking
Universityhasconstructedachip-basedmulti-dimensionalquantumentanglementnetwork.Thenetworkconsists
ofacentralchipconnectedtothreeendchipsbyopticalfiber,andtheentanglementrecoveryandfullconnectivity
havebeeneffectivelyrealizedattheendchipsbyusinghybridmultiplexingtechnology,whichlaysthefoundation
fortheconstructionoflarge-scaleandpracticalentanglementnetwork17.NISTconstructedtheNG-QNet(NIST
GaithersburgQuantumNetwork)testbedtocharacterizethefunctionoftheQINbasecomponents18.Theresearch
teamledbyLincolnLaboratoryconstructeda50kmthree-nodequantumnetworkexperimentalbed(BARQNET)
fortestingquantumstatesignaltransmissioncharacteristicsandcompensationmechanisms19.TheUniversityof
WaterloowillcollaboratewithEuroperesearchteamaimingatconnectingCanadaandEuropeviaaquantum
15https://www.ipms.fraunhofer.de/en/press-media/press/2023/Photonic-quantum-chip.html
16/10.1038/s41586-023-06195-1
17/doi/10.1126/science.adg9210
18/programs-projects/quantum-communications-and-networks
19/10.48550/arXiv.2307.15696
9/35
satellitelink20.TheUniversityofFlorida,incollaborationwiththeUniversityofCalgary,Canada,proposedand
launchedaquantuminformationnetworkbasedonsatelliterelay21.Meanwhile,somecompaniesareactively
engagedinthedevelopmentofQIN.Forexample,Qunnect,incooperationwithNewYorkUniversity,tested
successfullya16-kilometerQINlinkusinghighlyentangledquantumphotons22.Theseeffortsandcollaborations
areexpectedtopromotethedevelopmentandapplicationofQIN.
2.2.StandardizationActivitiesforQKD
Inrecentyears,majorstandardizationorganizationshaveactivelycarriedoutthepreparationofQKDrelated
standards,includingtheChinaCommunicationsStandardizationAssociation(CCSA),theChinaCryptography
IndustryStandardizationTechnicalCommittee(CSTC),andtheNationalInformationSecurityStandardization
TechnicalCommittee(TC260);Internationally,therearetheInternationalOrganizationforStandardization(ISO),
theInternationalTelecommunicationUnion(ITU),andtheEuropeanTelecommunicationsStandardsInstitute
(ETSI).Thecontentofthepreparationhascoveredterminologydefinitions,applicationscenariosandrequirements,
networkarchitecture,equipmenttechnicalrequirements,QKDsecurity,testingandevaluationmethods,andother
aspects.
2.2.1.ChineseStandardizationProgress
ChinaCommunicationsStandardizationAssociation(CCSA)
TheChinaCommunicationsStandardizationAssociation(CCSA)isastandardizationorganizationengagedinthe
fieldofinformationandcommunicationtechnologyinChina,conductingresearchoncommunicationstandard
systems.CCSAhasestablishedthe7thSpecialTaskGroup(ST7)forQuantumCommunicationandInformation
Technology,whichincludestwosubworkinggroups:theQuantumCommunicationWorkingGroup(WG1)and
20
https://uwaterloo.ca/news/science/connecting-canada-and-europe-through-quantum-satellite?utm_source=miragenews&u
tm_medium=miragenews&utm_campaign=news
21/prapplied/abstract/10.1103/PhysRevApplied.20.024048
22
/about/news-publications/news/2023/september/nyu-takes-quantum-step-in-establishing-cutting-edg
e-tech-hub-in-.html
10/35
theQuantumInformationProcessingWorkingGroup(WG2).ST7hasinitiated25standarddevelopmentprojects
intermsofterminologydefinition,applicationscenariosandrequirements,networkarchitecture,equipment
technicalrequirements,QKDsecurity,andtestingandevaluationmethods.Amongthem,thenationalstandard
GB/T42829-2023“Basicrequirementsforquantumsecurecommunicationapplications”wasofficiallyissuedin
August2023.12othercommunicationindustrystandardshavealsobeenofficiallypromulgatedandimplemented:
YD/T4632-2023Technicalrequirementsforquantumkeydistributionandclassicalopticalcommunicationco
fibertransmission
YD/T3835.2-2023Testmethodsforquantumkeydistribution(QKD)systemsPart2:QKDsystembasedon
Gaussianmodulatedcoherentstateprotocol
YD/T4410.1-2023QuantumKeyDistribution(QKD)NetworkAkInterfaceTechnicalRequirementsPart1:
ApplicationProgramInterface(API)
YD/T3834.2-2023Technicalrequirementsforquantumkeydistribution(QKD)systemsPart2:QKDsystems
basedonGaussianmodulationcoherentstateprotocol
YD/T4303-2023Technicalspecificationofquantumsecurecommunicationapplicationequipmentbasedon
IPSecprotocol
YD/T4302.1-2023Technicalspecificationforquantumkeydistribution(QKD)networkmanagement—
Part1:NMSsystemfunction
YD/T4301-2023Quantumsecurecommunicationnetworkarchitecture
YD/T3907.2-2022KeycomponentsandmodulesforQuantumKeyDistribution(QKD)basedonBB84
protocol—Part2:Singlephotondetector
YD/T3907.1-2022KeycomponentsandmodulesforQuantumKeyDistribution(QKD)basedonBB84
protocol—Part1:Lasersource
YD/T3907.3-2021KeycomponentsandmodulesforQuantumKeyDistribution(QKD)basedonBB84
protocol-part3:QuantumRandomNumberGenerator(QRNG)
YD/T3835.1-2021TestmethodsforQuantumKeyDistribution(QKD)system-Part1:DecoystateBB84
protocolQKDsystem
YD/T3834.1-2021Technicalrequirementsforquantumkeydistribution(QKD)system-Part1:Decoystate
BB84protocolQKDsystem
11/35
ChinaCryptographyIndustryStandardizationTechnicalCommittee(CSTC)
QKDtechnologyinvolvesthegeneration,management,anduseofpasswords.TheChi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通信行业采购订单与合同风险管理
- 高端金融咨询服务保密及成果转化合作协议
- 车辆赠与及汽车保险理赔服务合同
- 整栋酒店式公寓租赁及运营管理协议
- 餐饮企业跨区域投资合作合同
- 厂房废墟改造方案
- 农业现代化牛场场地租赁合同范本(含环保设施建设)
- 知识产权全流程保护法律服务合同
- 安全叉车操作培训与承包服务协议书
- 牛场租赁与养殖人才培养服务合同
- 综采工作面液压支架安装回撤工职业技能理论考试题库150题(含答案)
- 电气类实验室安全培训
- 场地平整项目承包合同范本
- 船舶修理行业专业实践操作规范
- 河南省历年中考语文现代文阅读之非连续性文本阅读5篇(截至2024年)
- 麦秸秆环保板材项目可行性研究报告
- 加工厂股东合作合同范例专业版
- 市政工程安全文明施工标准化手册
- 水利水电工程施工机械台班费定额
- 山东某智慧农场项目可行性研究报告
- 新版《医疗器械经营质量管理规范》(2024)培训试题及答案
评论
0/150
提交评论