J- 面向6G时代前沿技术初探量子信息技术QITs-2024-20240403-v4.0-EN_第1页
J- 面向6G时代前沿技术初探量子信息技术QITs-2024-20240403-v4.0-EN_第2页
J- 面向6G时代前沿技术初探量子信息技术QITs-2024-20240403-v4.0-EN_第3页
J- 面向6G时代前沿技术初探量子信息技术QITs-2024-20240403-v4.0-EN_第4页
J- 面向6G时代前沿技术初探量子信息技术QITs-2024-20240403-v4.0-EN_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ExecutiveSummary

In2023,ITU-RissuedtheIMT-2030frameworkhighlightingsustainability,security,andresilience,

connectingtheunconnected,andubiquitousintelligenceasoverarchingaspectswhichactasdesignprinciples

commonlyapplicabletoallusagescenarios.InanotherrecommendationaboutthefuturedevelopmentofIMTfor

2030andbeyond,ITU-RmentionsthatquantumtechnologywithrespecttotheRANisapotentialtechnologyto

ensuresecurity,andresiliencewhenallowingforalegitimateexchangeofsensitiveinformationthroughnetwork

entities.Therefore,thetargetisbecomingmoreclearertoapplyquantumtechnologyinachievingsecureand

resilienceinthe6thgeneration(6G)communicationandbeyond.Tothisend,inthisannuallyrevisedwhitepaper,

weintroduceresearchprogressinapplyingquantuminformationtechnologies(QITs)tocommunicationand

networkandcomputingoverthepastyearandproposesomeexpectationsofquantumtechnologyresearchin2024.

Chapter2focusesonquantumsecurecommunicationaimingatsafeguardingcriticalinformationbyapplying

quantummechanisms.Theintroductionstartswithvarioustheoriesandexperimentscontinuouslycarriedoutin

quantumkeydistribution(QKD),quantumrandomnumbergenerator(QRNG),andquantuminformationnetwork

(QIN),followedbystate-of-the-artstandardizationactivitiesforQKDallovertheworld.Intheimplicationsfor6G,

quantumencryptiondemonstrationdeployedontheinternetofvehicles;integratedcontinuousvariableQKD

(CV-QKD)withG.698.4device;anddeployingquantumcryptographyinthe6Gnetworkareintroduced

respectively.

Chapter3givesinsightintotheresearchofhowtosatisfythedramaticallyincreasedcommunicationsystem

performanceandrichdiversityofinnovativeservicesexpectedby6Gbyapplyingquantumcomputing.Firstly,

computingscenariosandkeyissuesforcommunicationareanalyzed,includingsignalprocessing,network

optimization,serviceprocessing,andnetworkintelligentization.Secondly,a"Classical+Quantum"hybrid

computingplatformwitharobustcomputationalfoundationisproposedtoprovidecomputationalsupportservices

tailoredtodifferentdomains,facilitatingresearchinnovationandproductimplementation.Thirdly,theimplications

ofquantumcomputingfor6Gareintroducedwiththreeexamples,whichapplyquantumcomputingtosolve

classicalcommunicationissues,respectively.

1/35

Basedonthebarrier-breakingachievementsin2023,2024willprobablymarkasignificantyearforquantum

computingtechnology,fromwhenthefieldofquantumcomputingisexpectedtotransitionfromphysicalqubitsto

error-correctinglogicquantumbits,andanti-quantumcryptographyresearchisexpectedtospeedupaswell.

2/35

TableofContents

ExecutiveSummary........................................................................................................................................................1

1.Introduction...............................................................................................................................................................4

2.QuantumCommunicationandNetwork..............................................................................................................6

2.1.KeyTechnologies........................................................................................................................................6

2.1.1.QuantumKeyDistribution...................................................................................................................6

2.1.2.QuantumRandomNumberGenerator.................................................................................................8

2.1.3.QuantumInformationNetwork............................................................................................................9

2.2.StandardizationActivitiesforQKD..........................................................................................................10

2.2.1.ChineseStandardizationProgress......................................................................................................10

2.2.2.InternationalStandardizationProgress..............................................................................................12

2.3.Implicationsfor6G.....................................................................................................................................16

2.3.1.QuantumEncryptionintheInternetofVehicles...............................................................................16

2.3.2.QuantumEncryptionIntegrationwithBearerNetworkEquipment..................................................17

2.3.3.QuantumCommunicationSecurity....................................................................................................18

3.QuantumComputing.............................................................................................................................................20

3.1.ComputingScenariosandKeyIssuesforCommunication................................................................20

3.1.1.SignalProcessing...............................................................................................................................20

3.1.2.NetworkOptimization........................................................................................................................21

3.1.3.ServiceProcessing..............................................................................................................................22

3.1.4.NetworkIntelligentization.................................................................................................................22

3.2.QuantumHybridHeterogeneousComputing................................................................................................23

3.3.Implicationsfor6G........................................................................................................................................26

3.3.1.Single-CellMassiveMIMOAntennaOptimization...........................................................................26

3.3.2.MIMOBeamSelectionofMultipleCellular......................................................................................28

3.3.3.PhaseCorrectionofMillimeterWaveSignals...................................................................................31

4.FutureExpectation.....................................................................................................................................................34

5.Acknowledgement.....................................................................................................................................................35

3/35

1.Introduction

Thescopeofthisannuallyrevisedwhitepaperistointroducethelatestresearchprogressaboutquantum

informationtechnologies(QITs)fulfillingstringentdemandsofcommunicationandcomputingenvisagedin6Gor

beyond6G.InadditiontobenefitsexpectedfromQITstocommunicationandnetworkandcomputing,thisversion

of2024whitepaperproposessomeexpectationsofquantumtechnologyresearchin2024.

Chapter2.QuantumCommunicationandNetwork

Chapter2focusesonquantumsecurecommunicationaimingatsafeguardingcriticalinformationbyapplying

quantummechanisms.

In2023,varioustheoriesandexperimentshavecontinuouslybeencarriedoutinthefollowingkeytechnologies.

Forquantumkeydistribution(QKD),progresshasbeenmadeinnewprotocolsandclassicalquantum

co-transmissionstudies,etc.,andtheperformanceofQKDsystemshasbeenfurtherimproved.Quantumrandom

numbergenerator(QRNG)technologyiscurrentlybeingdevelopedandimprovedtoachievemoreefficientand

stableQRNGs.Manylaboratoriesandresearchinstituteshaveconductedanumberofexperimentstoverifythe

feasibilityandstabilityofquantumInformationNetwork(QIN).

AboutthestandardizationactivitiesforQKD,majorstandardizationorganizationshaveactivelycarriedoutthe

preparationofQKDrelatedstandards,coveringterminologydefinitions,applicationscenariosandrequirements,

networkarchitecture,equipmenttechnicalrequirements,QKDsecurity,testingandevaluationmethods,andother

aspects.

Inthelast,theimplicationsofquantumtechnologiesfor6Garediscussedfromthefollowingthreeaspects:

quantumencryptiondemonstrationdeployedontheinternetofvehicles;integratedcontinuousvariableQKD

(CV-QKD)withG.698.4devicetoconvergeQKDintoclassicalcommunicationnetworkandthusmakefulluseof

existingtelecominfrastructure;anddeployingquantumcryptographyinthe6Gnetworktoachievetheoverall

securitymanagementofthecommunicationsystemareintroduced.

Chapter3.QuantumComputing

Tosatisfythedramaticallyincreasedcommunicationsystemperformanceandrichdiversityofinnovativeservices

4/35

expectedby6G,Chapter3givesinsightintotheresearchofhowtoenhancecommunicationbyapplyingquantum

computing.

Firstly,consideringthattheessenceofcommunicationisaseriesofmathematicalcalculations,ahierarchical

communicationnetworkfromacomputingperspectiveisdescribedtofacilitatetheanalysisofcomputingscenarios

andkeyissuesforcommunicationincludingsignalprocessing,networkoptimization,serviceprocessing,and

networkintelligentization.

Secondly,a"Classical+Quantum"hybridcomputingplatformwitharobustcomputationalfoundationisproposed

toprovidecomputationalsupportservicestailoredtodifferentdomains,facilitatingresearchinnovationandproduct

implementation.Especially,thearchitecturedesignofthishybridcomputingplatformconsidersprinciplesand

conceptsofmodularity,standardization,widecompatibility,autonomoussecurity,andintelligenceefficiency.

Thirdly,theimplicationsofquantumcomputingfor6Gareintroducedwiththreeexamples,whichapplyquantum

computingtosolveclassicalcommunicationissues,respectively.Thethreeexamplesinclude:solvingsingle-cell

massiveMIMOantennaoptimizationbyusingtheFilteringVariationalQuantumAlgorithm(FVQE),solving

MIMObeamselection(MBS)bydesignedquantumalgorithmsbasedonCoherentIsingmachines(CIM),solving

phasecorrectionofmillimeterwavesignalsbyapplyingaphaseoffsetcorrectionmodelobtainedwithQuantum

SupportVectorMachine(QSVM)algorithmontheterminalsideandthusreducingreferencesignalingoverheads.

Chapter4.FutureExpectation

Inthelastquarterof2023,wewitnessedanindustrymilestoneinthequantumarea,i.e.,breakingthe1,000-qubit

barrier,givingquantumcomputersmorecomputingpowerthaneverbefore.Meanwhile,specialistsfromacademia

createdaquantumcomputerwiththelargest-evernumberoflogicalquantumbitsi.e.,48logicalqubits,wherein

thelogicalqubitsratherthanthehardware-basedqubitsarepromisingtoreducethemassiveamountsof

error-correctingsufferedbyquantumcomputers.Consequently,2024willprobablymarkasignificantyearfor

quantumcomputingtechnology,fromwhenthefieldofquantumcomputingisexpectedtotransitionfromphysical

qubitstoerror-correctinglogicquantumbits,andanti-quantumcryptographyresearchisexpectedtospeedupas

well.

5/35

2.QuantumCommunicationandNetwork

2.1.KeyTechnologies

2.1.1.QuantumKeyDistribution

Quantumcommunicationisbasedonquantumsuperpositionorentanglementtorealizekeydistributionor

informationtransmission,whichisunconditionallysecureatthetheoreticallevel.Quantumkeydistribution

(QKD)isthemostdevelopedquantumcommunicationtechnologybasedonthebasicprinciplesofquantum

mechanics,combinedwiththeencryptionmethodof"oneencryptionatatime"totransferthekeybetween

communicationusers.

In2023,variousQKDtheoriesandexperimentshavecontinuouslybeencarriedout,progresshasbeenmadeinnew

protocolsandclassicalquantumco-transmissionstudies,etc.,andtheperformanceofQKDsystemshasbeen

furtherimproved.AjointteamledbyTsinghuaUniversitygaveasecurityproofofthedevice-independentQKD

(DI-QKD)protocolbylinkingcomplementaritytoquantumnonlocalityandprovidedanewtheoreticaltoolforthe

practicalimplementationofDI-QKD1.AjointteamledbytheAustralianNationalUniversity(ANU)proposeda

measurementDI-QKDprotocolthatrequiresthepreparationofhigh-dimensionalquantumstatestobemeasured

usingthecoherenttotalphotonnumbermethod,andsimulationsshownthatitcanbreakthePLOBlimitatshorter

distancesthanTwin-Fieldprotocolswhenencodedina7-dimensionalstate2.Acollaborativeeffortspearheadedby

theChinaAcademyofTelecommunicationsResearch(CATR)hassuccessfullydemonstratedaremarkabletotal

transmissiondatacapacityof1Tbpswithinanopticaltransportnetwork.Thisachievementwasrealizedover

100.96kmthroughco-fibertransmissionemployingfew-modefiber,generatingaquantumsecuritykeyrate(SKR)

of2.7kbps3.QKDexperimentsusingsolid-statesingle-photonemittersareattractingincreasingattentiondueto

theirrapidlyimprovingperformanceandcompatibilitywithfuturequantumnetworks.Thejointteamledby

Heriot-WattUniversity(UK)conductedQKDexperimentsusingInGaAsquantumdotsasasingle-photonsource,

generatingafinitekeyof13kbpsat100km,inone-minuteacquisitiontime4.Theseresearchresultsarehelpfulin

exploringQKDapplicationsandrealizinglarge-scaleQKDnetwork.

1/10.1103/PhysRevLett.131.140801

2/10.1038/s41534-023-00698-5

3/10.1364/OL.500406

4/10.1038/s41467-023-39219-5

6/35

Currently,quantumcommunicationsystems,relyingonQKDandothertechnicalsolutions,havebeen

commerciallylaunchedandimplementedbothdomesticallyandinternationally.Nonetheless,commercialQKD

systemsstillencounternumerouschallengesconcerningsecurekeyrates,transmissiondistances,devicesize,and

highcosts.IncommercialQKDsystems,transmissionisoftenachievedusingprepare-and-measureQKD,which

canbefurtherclassifiedintotwotypes:continuousvariableQKD(CV-QKD)anddiscretevariableQKD

(DV-QKD).

TheadvantageofCV-QKDisthatitcouldachievehighSKRovermetrotransmissiondistancesusingtheclassical

communicationdetectionschemes.In2023,ShanxiUniversityadoptedthediscretemodulationCV-QKDto

generate2.11MbpsSKRover80km5.ShanghaiJiaoTongUniversityusedatransmitter-sidelightsource

integrationsystemtogenerate0.75MbpsSKRat50km6.TheTechnicalUniversityofDenmarkuseda

receiver-sideintegratedschemesystemtoachieve300MbpsSKRat10km7.TheUniversityofWaterloogavea

securityproofofthefinitekeylengthofthediscretemodulationCV-QKDandexperimentallydemonstratedthat

theQKDtransmissiondistancecanbelongerthan72kmwith1012keylength8.

TheDV-QKDexperimentalsystemhasundergonecontinuousdevelopment,resultingincertainenhancementsto

boththeSKRandtransmissiondistance.In2023,thegroupofappliedphysicsfromGenevarealizedaSKRof64

Mbpsover10kmviatime-binencodingQKDusingmultipixelSNSPDs9.TheresearchteamledbyUniversityof

ScienceandTechnologyofChinamadeachievementsonbothaspects,takingadvantageofmultipixelSNSPDs,a

new-recordSKRof115.8Mbpsover10kmfiberchannelwasobtainedusingadeceptivestatebasedBB84QKD

protocol10;adoptingthe3-intensitysending-or-not-sendingTF-QKD,relay-lessQKDwasrealizedovera1002km

fiberchannel.Thesestudiesdemonstratedthatcurrenttechniquescansatisfytheencryptionrequirementsforhigh

bandwidthcommunicationsandthefeasibilityinlongdistancecommunications.

ForQKDindustrialization,low-cost,mass-manufacturedandpracticalQKDdevicesarerequired.Froma

commercialutilizationperspective,thecoredevicesofquantumcommunication,includingtheQKDencoderand

5/10.1364/OL.492082

6/10.1364/PRJ.473328

7/abs/2305.19642

8/10.1103/PRXQuantum.4.040306

9/10.1038/s41566-023-01168-2

10/10.1038/s41566-023-01166-4

7/35

decoder,aremovingtowardsminiaturizationandcost-effectiveness.NationalInformationOptoelectronics

InnovationCenterfromChinaInformationandCommunicationTechnologiesGroupCorporationdeveloped

silicon-basedpolarizationstatemodulatoranddemodulator.Relyingonthetwomodules,thequbit-basedclock

synchronizationandchip-basedpolarizationcompensationweredemonstratedover150kmdistancetoachieve

866bpsSKR11.ResearchersattheUniversityofGeneva,Switzerland,andtheInstituteofPhotonicsand

Nanotechnology,Italy,demonstratedachip-basedQKDsystemusingasilicon-basedtransmitterchipsupporting

high-speedmodulationandapolarization-independentlow-lossreceiverchipinaluminumborosilicateglass,to

achievea1.3kbpsover151km12.

2.1.2.QuantumRandomNumberGenerator

QuantumRandomNumberGenerator(QRNG)isadevicethatutilizestheprinciplesofquantumphysicsto

generatetruerandomnumbers.Unliketraditionalrandomnumbergenerators,QRNGgeneratestruerandom

numbersbasedonquantumopticalprinciples,suchasvacuumstatenoise,quantumphasenoiseoflaser

spontaneousradiation,andphotonnumberstatistics.Itstandsasthesolegenuinelytheoreticallydefensiblerandom

numbergeneratortodate,leveragingquantummechanicaluncertaintytoguaranteethegenerationofhighly

unpredictableanduncorrelatedrandomnumbers.QRNGhasimportantapplications.Incryptography,truerandom

numbersarecrucialforkeygeneration,encryptionalgorithmsandauthentication,etc.QRNGcanprovidehigher

securityagainstpasswordcracking.However,itshouldbenotedthatQRNGonlyguaranteesthetruerandomness

ofthegeneratedsequencesanddoesnotincludethesecurityofthedistributionprocess.

QRNGtechnologyiscurrentlybeingdevelopedandimproved.Manyresearchinstitutesandcompaniesare

committedtoresearchinganddevelopingmoreefficientandstableQRNGs.In2023,researchersfromajointteam

ledbyGhentUniversityexperimentallydemonstratedanultra-fastrandomnumbergenerationrateof100Gbit/s,

settinganewrecordofanorderofmagnitudeincreaseintherateofQRNGbasedonvacuumfluctuation13.

QuantumDice(UK)announcedthelaunchofitslatestgenerationofAPEXQRNGwithpost-processingrandom

numbergenerationratesofupto7.5Gbps14,whichcanalsobeintegratedintoexistinginfrastructuresandhave

highsecurityfeatures.TheGermanFederalMinistryofEducationandResearchfundedtheChip-BasedQuantum

11/10.1364/PRJ.482942

12/10.1364/PRJ.481475

13/10.1103/PRXQuantum.4.010330

14

/quantum-dice-launches-the-new-generation-of-apex-the-worlds-fastest-quantum-random

-number-generator-enabling-trusted-cybersecurity-for-enterprise-applications/

8/35

RandomNumberDevicesproject15,whichwilldevelopahigh-speedgenerationofrandomnumbersbasedonthe

quantumphotoniceffectswithinacompactchip,meetingtheCommonCriteriaforITproductsecurity.Withthe

furtherdevelopmentofquantumtechnology,itisexpectedthatQRNGswillbeutilizedinawiderrangeof

applicationsandcontributesignificantlytoinformationsecurityandscientificresearch.

2.1.3.QuantumInformationNetwork

QuantumInformationNetworks(QIN)isacommunicationnetworksystembasedontheprinciplesofquantum

physics.Itutilizeskeytechnologiessuchasquantumentanglementmanipulation,quantumteleportation,quantum

relay,etc.,aimingatrealizingthefunctionsofquantumlong-distancecommunication,quantumcomputation,and

quantuminformationinterconnectionnetwork.QINcurrentlystandsasaresearchhotspotwithinthequantum

informationfield,representingtheforefrontofdevelopmentinbothcommunicationandcomputationforthefuture.

Inrecentyears,manycountrieshavebeenactivelypromotingtheresearchandapplicationofquantuminformation

networks.Manylaboratoriesandresearchinstituteshaveconductedanumberofexperimentstoverifythe

feasibilityandstabilityofQIN.In2023,researchersattheUniversityofScienceandTechnologyofChinaand

PekingUniversityrealized51-qubitentanglementontheZuchongzhisuperconductingquantumcomputerplatform,

usinghigh-fidelityparallelquantumgates,andrealized51-qubitone-dimensionaland30-qubittwo-dimensional

clusterstatesandachievedfidelitiesof0.637 ± 0.030and0.671 ± 0.006,respectively16.AjointteamfromPeking

Universityhasconstructedachip-basedmulti-dimensionalquantumentanglementnetwork.Thenetworkconsists

ofacentralchipconnectedtothreeendchipsbyopticalfiber,andtheentanglementrecoveryandfullconnectivity

havebeeneffectivelyrealizedattheendchipsbyusinghybridmultiplexingtechnology,whichlaysthefoundation

fortheconstructionoflarge-scaleandpracticalentanglementnetwork17.NISTconstructedtheNG-QNet(NIST

GaithersburgQuantumNetwork)testbedtocharacterizethefunctionoftheQINbasecomponents18.Theresearch

teamledbyLincolnLaboratoryconstructeda50kmthree-nodequantumnetworkexperimentalbed(BARQNET)

fortestingquantumstatesignaltransmissioncharacteristicsandcompensationmechanisms19.TheUniversityof

WaterloowillcollaboratewithEuroperesearchteamaimingatconnectingCanadaandEuropeviaaquantum

15https://www.ipms.fraunhofer.de/en/press-media/press/2023/Photonic-quantum-chip.html

16/10.1038/s41586-023-06195-1

17/doi/10.1126/science.adg9210

18/programs-projects/quantum-communications-and-networks

19/10.48550/arXiv.2307.15696

9/35

satellitelink20.TheUniversityofFlorida,incollaborationwiththeUniversityofCalgary,Canada,proposedand

launchedaquantuminformationnetworkbasedonsatelliterelay21.Meanwhile,somecompaniesareactively

engagedinthedevelopmentofQIN.Forexample,Qunnect,incooperationwithNewYorkUniversity,tested

successfullya16-kilometerQINlinkusinghighlyentangledquantumphotons22.Theseeffortsandcollaborations

areexpectedtopromotethedevelopmentandapplicationofQIN.

2.2.StandardizationActivitiesforQKD

Inrecentyears,majorstandardizationorganizationshaveactivelycarriedoutthepreparationofQKDrelated

standards,includingtheChinaCommunicationsStandardizationAssociation(CCSA),theChinaCryptography

IndustryStandardizationTechnicalCommittee(CSTC),andtheNationalInformationSecurityStandardization

TechnicalCommittee(TC260);Internationally,therearetheInternationalOrganizationforStandardization(ISO),

theInternationalTelecommunicationUnion(ITU),andtheEuropeanTelecommunicationsStandardsInstitute

(ETSI).Thecontentofthepreparationhascoveredterminologydefinitions,applicationscenariosandrequirements,

networkarchitecture,equipmenttechnicalrequirements,QKDsecurity,testingandevaluationmethods,andother

aspects.

2.2.1.ChineseStandardizationProgress

ChinaCommunicationsStandardizationAssociation(CCSA)

TheChinaCommunicationsStandardizationAssociation(CCSA)isastandardizationorganizationengagedinthe

fieldofinformationandcommunicationtechnologyinChina,conductingresearchoncommunicationstandard

systems.CCSAhasestablishedthe7thSpecialTaskGroup(ST7)forQuantumCommunicationandInformation

Technology,whichincludestwosubworkinggroups:theQuantumCommunicationWorkingGroup(WG1)and

20

https://uwaterloo.ca/news/science/connecting-canada-and-europe-through-quantum-satellite?utm_source=miragenews&u

tm_medium=miragenews&utm_campaign=news

21/prapplied/abstract/10.1103/PhysRevApplied.20.024048

22

/about/news-publications/news/2023/september/nyu-takes-quantum-step-in-establishing-cutting-edg

e-tech-hub-in-.html

10/35

theQuantumInformationProcessingWorkingGroup(WG2).ST7hasinitiated25standarddevelopmentprojects

intermsofterminologydefinition,applicationscenariosandrequirements,networkarchitecture,equipment

technicalrequirements,QKDsecurity,andtestingandevaluationmethods.Amongthem,thenationalstandard

GB/T42829-2023“Basicrequirementsforquantumsecurecommunicationapplications”wasofficiallyissuedin

August2023.12othercommunicationindustrystandardshavealsobeenofficiallypromulgatedandimplemented:

YD/T4632-2023Technicalrequirementsforquantumkeydistributionandclassicalopticalcommunicationco

fibertransmission

YD/T3835.2-2023Testmethodsforquantumkeydistribution(QKD)systemsPart2:QKDsystembasedon

Gaussianmodulatedcoherentstateprotocol

YD/T4410.1-2023QuantumKeyDistribution(QKD)NetworkAkInterfaceTechnicalRequirementsPart1:

ApplicationProgramInterface(API)

YD/T3834.2-2023Technicalrequirementsforquantumkeydistribution(QKD)systemsPart2:QKDsystems

basedonGaussianmodulationcoherentstateprotocol

YD/T4303-2023Technicalspecificationofquantumsecurecommunicationapplicationequipmentbasedon

IPSecprotocol

YD/T4302.1-2023Technicalspecificationforquantumkeydistribution(QKD)networkmanagement—

Part1:NMSsystemfunction

YD/T4301-2023Quantumsecurecommunicationnetworkarchitecture

YD/T3907.2-2022KeycomponentsandmodulesforQuantumKeyDistribution(QKD)basedonBB84

protocol—Part2:Singlephotondetector

YD/T3907.1-2022KeycomponentsandmodulesforQuantumKeyDistribution(QKD)basedonBB84

protocol—Part1:Lasersource

YD/T3907.3-2021KeycomponentsandmodulesforQuantumKeyDistribution(QKD)basedonBB84

protocol-part3:QuantumRandomNumberGenerator(QRNG)

YD/T3835.1-2021TestmethodsforQuantumKeyDistribution(QKD)system-Part1:DecoystateBB84

protocolQKDsystem

YD/T3834.1-2021Technicalrequirementsforquantumkeydistribution(QKD)system-Part1:Decoystate

BB84protocolQKDsystem

11/35

ChinaCryptographyIndustryStandardizationTechnicalCommittee(CSTC)

QKDtechnologyinvolvesthegeneration,management,anduseofpasswords.TheChi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论