




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面解析几何第九章第8讲曲线与方程【考纲导学】1.了解方程的曲线与曲线的方程的对应关系;2.了解解析几何的基本思想和利用坐标法研究曲线的简单性质;3.能够根据所给条件选择适当的方法求曲线的轨迹方程.栏目导航01课前基础诊断03课后感悟提升02课堂考点突破04配套训练课前基础诊断11.曲线与方程一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是__________的解;(2)以这个方程的解为坐标的点都是________的点.那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.曲线可以看做是符合某条件的点的集合,也可看做是适合某种条件的点的轨迹,因此,此类问题也叫轨迹问题.这个方程曲线上2.求曲线方程的基本步骤【答案】A2.已知命题“曲线C上的点的坐标是方程f(x,y)=0的解”是正确的,则下列命题中正确的是(
)A.满足方程f(x,y)=0的点都在曲线C上B.方程f(x,y)=0是曲线C的方程C.方程f(x,y)=0所表示的曲线不一定是曲线CD.以上说法都正确【答案】C3.已知点P(x,y)在以原点为圆心的单位圆上运动,则点Q(x+y,xy)的轨迹是(
)A.圆 B.抛物线C.椭圆 D.双曲线【答案】B4.(教材习题改编)已知⊙O方程为x2+y2=4,过点M(4,0)的直线与⊙O交于A,B两点,则弦AB中点P的轨迹方程为________.【答案】(x-2)2+y2=4(0≤x<1)1.求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系.检验可从以下两个方面进行:一是方程的化简是否是同解变形;二是是否符合题目的实际意义.2.求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.【答案】(1)√
(2)×
(3)×
(4)×课堂考点突破2直接法求轨迹方程【规律方法】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性.定义法求轨迹方程
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.【解析】如图所示,设动圆M与圆C1及圆C2分别外切于点A和点B,则有|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.【规律方法】应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.【跟踪训练】2.如图所示,已知△ABC的两顶点坐标A(-1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.求曲线M的方程.代入法求轨迹方程【规律方法】代入法(相关点法)求轨迹方程的一般步骤课后感悟提升31个主题——坐标法求轨迹方程通过坐标法,由已知条件求轨迹方程,通过对方程的研究,明确曲线的位置、形状以及性质是解析几何需要完成的两大任务,是解析几何的核心问题,也是高考的热点之一.3种方法——求轨迹方程的三种常用方法明确求轨迹方程的适用条件是求轨迹方程的关键.(1)定义法:求轨迹方程时,应尽量利用几何条件探求轨迹的类型,应用定义法,这样可以减少运算量,提高解题速度.(2)代入法(相关点法):当所求动点P(x,y)是随着另一动点Q(x′,y′)(称之为相关点)而运动且相关点Q满足一曲线方程时,就可用代入法求轨迹方程.此时应注意:代入法求轨迹方程是将x′,y′表示成关于x,y的式子,同时要注意x′,y′的限制条件.(3)直接法:如果动点满足的几何条件本身是一些几何量(如距离与角等)的等量关系,或这些几何条件简单明了且易于表达,就可运用直接法求轨迹方程.在运用直接法求轨迹方程时要注意:化简方程的过程中有时破坏了方程的同解性,此时要补上遗漏点或删除多余的点,这是不可忽视的.1.(2015年浙江)如图所示,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是(
)A.直线 B.抛物线C.椭圆 D.双曲线的一支【答案】C
【解析】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P满足∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 注册会计师考试制定计划策略试题及答案
- 有效利用时间的备考方法与试题及答案
- 注册会计师财务资格考评试题及答案
- 2025年会计师考试易错题试题及答案
- 高压水射流清淤施工方案
- 2024年生物制品相关题目试题及答案
- 2025年市场调研方法与应用试题及答案
- 适合考生的2025年注册会计师考试复习策略试题及答案
- 2024年项目管理专业人士考试知识体系试题及答案
- 拖拉机融资租赁操作实务考核试卷
- 网格员安全培训
- Environmental Biotechnology知到智慧树章节测试课后答案2024年秋哈尔滨工业大学
- 《珠三角地区环境质量与经济发展的实证探究》8800字(论文)
- 通讯设备故障处理预案
- 帝豪EV450维修手册
- 市政工程管线之间及其构筑物之间最小水平距离要求
- 数字经济学-教学案例及答案 唐要家
- 【S镇35kV变电站一次系统设计(论文)14000字】
- V带传动设计说明书
- 酒店投标书范本
- 与农户的收购协议书范本
评论
0/150
提交评论