




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏常熟市张桥中学高三下学期(5月)三调数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元2.已知集合,,,则()A. B. C. D.3.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知集合,,则等于()A. B. C. D.5.设全集,集合,,则()A. B. C. D.6.若复数,则()A. B. C. D.207.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.8.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面 B.C.当时,平面 D.当m变化时,直线l的位置不变9.已知函数,,若总有恒成立.记的最小值为,则的最大值为()A.1 B. C. D.10.A. B. C. D.11.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1 B. C.2 D.12.在中,角所对的边分别为,已知,则()A.或 B. C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.若实数满足约束条件,设的最大值与最小值分别为,则_____.14.在数列中,,则数列的通项公式_____.15.已知是夹角为的两个单位向量,若,,则与的夹角为______.16.展开式中项系数为160,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.18.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.82819.(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.20.(12分)在中,角、、的对边分别为、、,且.(1)若,,求的值;(2)若,求的值.21.(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.22.(10分)已知在ΔABC中,角A,B,C的对边分别为a,b,c,且cosB(1)求b的值;(2)若cosB+3sin
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.2.D【解析】
根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.3.C【解析】
化简复数为、的形式,可以确定对应的点位于的象限.【详解】解:复数故复数对应的坐标为位于第三象限故选:.【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.4.B【解析】
解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.5.D【解析】
求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于故集合或故集合故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.6.B【解析】
化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.7.D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.8.C【解析】
根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.9.C【解析】
根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【详解】由题,总有即恒成立.设,则的最大值小于等于0.又,若则,在上单调递增,无最大值.若,则当时,,在上单调递减,当时,,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时,,在递减;当时,,在递增.故在处取得极大值,为.故的最大值为.故选:C【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.10.A【解析】
直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.11.B【解析】
画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.12.D【解析】
根据正弦定理得到,化简得到答案.【详解】由,得,∴,∴或,∴或.故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【点睛】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.14.【解析】
由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:∵,∴①,②,①﹣②得:,又∵,∴数列的奇数项为首项为1,公差为2的等差数列,∴当为奇数时,,当为偶数时,则为奇数,∴,∴数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式.15.【解析】
依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【详解】解:因为是夹角为的两个单位向量所以,又,所以,,所以,因为所以;故答案为:【点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.16.-2【解析】
表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或;(2)见解析【解析】
(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.【详解】(1)由条件可知直线的斜率存在,则可设直线的方程为,则,由,有,所以,由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,故所求直线方程为或.(也可联立直线与椭圆方程,由验证)(2)设,则,直线的方程为.由得,由,解得,,当时,,故直线恒过定点.【点睛】此题考查的是直线与椭圆的位置关系中的过定点问题,计算过程较复杂,属于难题.18.(1)190(2)见解析(3)可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【解析】
(1)排序后第10和第11两个数的平均数为中位数;(2)由茎叶图可得列联表;(3)由列联表计算可得结论.【详解】解:(1).(2)抗倒伏易倒伏矮茎154高茎1016(3)由于,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【点睛】本题考查茎叶图,考查独立性检验,正确认识茎叶图是解题关键.19.(1);(2)存在,.【解析】
(1)由条件建立关于的方程组,可求得,得出椭圆的方程;(2)①当直线的斜率不存在时,可求得,求得,②当直线的斜率存在且不为0时,设联立直线与椭圆的方程,求出线段,再由得出线段,根据等差中项可求得,得出结论.【详解】(1)由条件得,所以椭圆的方程为:;(2),①当直线的斜率不存在时,,此时,②当直线的斜率存在且不为0时,设,联立消元得,设,,直线的斜率为,同理可得,所以,综合①②,存在常数,使得成等差数列.【点睛】本题考查利用椭圆的离心率求椭圆的标准方程,直线与椭圆的位置关系中的弦长公式的相关问题,当两直线的斜率具有关系时,可能通过斜率的代换得出另一条线段的弦长,属于中档题.20.(1);(2).【解析】
(1)利用余弦定理得出关于的二次方程,结合,可求出的值;(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.【详解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因为,所以,从而,所以.【点睛】本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.21.(1)见解析(2)见解析【解析】
(1)利用导函数的正负确定函数的增减.(2)函数在有两个零点,即方程在区间有两解,令通过二次求导确定函数单调性证明参数范围.【详解】解:(1)证明:因为,当时,,,所以在区间递减;当时,,所以,所以在区间递增;且,所以函数的极小值点为1(2)函数在有两个零点,即方程在区间有两解,令,则令,则,所以在单调递增,又,故存在唯一的,使得,即,所以在单调递减,在区间单调递增,且,又因为,所以,方程关于的方程在有两个零点,由的图象可知,,即.【点睛】本题考查利用导数研究函数单调性,确定函数的极值,利用二次求导,零点存在性定理确定参数范围,属于难题.22.(1)b=32【解析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求b的值,所以可以考虑到根据余弦定理将cosB,cosC分别用边表示,再根据正弦定理可以将sinAsinC转化为ac,于是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 凉茶加盟合同标准文本
- 上海项目投资咨询合同范例
- 专利合同标准文本
- 基于价值链的X公司全面预算管理优化研究
- 城市河湖塘湿地景观近自然设计研究-以荆州古城护城河为例
- 公司出国旅游合同标准文本
- 大数据平台数据源访问控制与数据安全分享技术研究
- 代理记账客户信息保密协议
- 职业交流合同
- 农机维修夫妻合同标准文本
- 2024CSCO免疫检查点抑制剂相关的毒性管理指南
- 专题07大气的组成和垂直分层(解析版)
- 2025年广发银行股份有限公司招聘笔试参考题库含答案解析
- 脚手架拆除施工专项方案(最终)
- 2025年酒店财务部工作计划(5篇)
- 空调安装调试及售后服务方案
- 2025-2030年中国煤电行业发展潜力及投资战略规划研究报告
- 《我心目中的领导者》课件
- T-HSPAQ 0002-2024 盐渍天然肠衣
- 2024年广西安全员B证试题题库
- 周杰伦原版现场《默》钢琴弹唱钢琴谱钢琴简谱数字谱钢琴
评论
0/150
提交评论