




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE1-第2讲空间点、线、面的位置关系[做真题]1.(2024·高考全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有多数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.若α∥β,则α内有多数条直线与β平行,反之则不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.依据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此B中条件是α∥β的充要条件.故选B.2.(2024·高考全国卷Ⅱ)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.eq\f(\r(2),2) B.eq\f(\r(3),2)C.eq\f(\r(5),2) D.eq\f(\r(7),2)解析:选C.如图,连接BE,因为AB∥CD,所以异面直线AE与CD所成的角等于相交直线AE与AB所成的角,即∠EAB.不妨设正方体的棱长为2,则CE=1,BC=2,由勾股定理得BE=eq\r(5).又由AB⊥平面BCC1B1可得AB⊥BE,所以tan∠EAB=eq\f(BE,AB)=eq\f(\r(5),2).故选C.3.(2024·高考全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1 B.A1E⊥BDC.A1E⊥BC1 D.A1E⊥AC解析:选C.由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1,故选C.4.(2024·高考全国卷Ⅱ)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥EBB1C1C的体积.解:(1)证明:由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,所以BE⊥平面EB1C1.(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥EBB1C1C的体积V=eq\f(1,3)×3×6×3=18.[明考情]1.以几何体为载体考查空间点、线、面位置关系的推断,主要以选择、填空题的形式,题目难度中等.2.以解答题的形式考查空间平行、垂直的证明,并常与几何体的表面积、体积相渗透.空间线面位置关系的推断(基础型)[学问整合]推断与空间位置关系有关的命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行推断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中视察线面位置关系,结合有关定理,进行推断.(3)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相冲突的命题,进而作出推断.[考法全练]1.已知α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不行能是()A.垂直 B.相交C.异面 D.平行解析:选D.因为α是一个平面,m,n是两条直线,A是一个点,m⊄α,n⊂α,所以n在平面α内,m与平面α相交,因为A∈m,A∈α,所以A是m和平面α相交的点,所以m和n异面或相交,肯定不平行.2.(2024·沈阳市质量监测(一))已知m,n是空间中的两条不同的直线,α,β是空间中的两个不同的平面,则下列命题正确的是()A.若m∥n,m∥α,则n∥αB.若α∥β,m∥α,则m∥βC.若m⊥n,n⊂α,则m⊥αD.若m⊥α,m⊂β,则α⊥β解析:选D.对于选项A,m∥n,m∥α,则n∥α或n⊂α,A错;对于选项B,α∥β,m∥α,则m∥β或m⊂β,B错;对于选项C,m⊥n,n⊂α,不能推出m⊥α,C错;对于选项D,面面垂直的判定定理,正确.故选D.3.(2024·高考北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.解析:其中两个论断作为条件,一个论断作为结论,可组成3个命题.命题(1):若l⊥m,m∥α,则l⊥α,此命题不成立,可以举一个反例,例如在正方体ABCDA1B1C1D1中,设平面ABCD为平面α,A1D1和A1B1分别为l和m,满意条件,但结论不成立.命题(2):若l⊥m,l⊥α,则m∥α,此命题正确.证明:作直线m1∥m,且与l相交,故l与m1确定一个平面β,且l⊥m1,因为l⊥α,所以平面α与平面β相交,设α∩β=n,则l⊥n,又m1,n⊂β,所以m1∥n,又m1∥m,所以m∥n,又m在平面α外,n⊂α,故m∥α.命题(3):若m∥α,l⊥α,则l⊥m,此命题正确.证明:过直线m作一平面,且与平面α相交,交线为a,因为m∥α,所以m∥a.因为l⊥α,a⊂α,所以l⊥a,又m∥a,所以l⊥m.答案:若l⊥m,l⊥α,则m∥α(或若m∥α,l⊥α,则l⊥m,答案不唯一)空间几何体中的空间角(综合型)[学问整合]异面直线所成的角已知两条异面直线a、b,经过空间随意一点O,作a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).直线与平面所成的角直线与平面所成的角是直线和它在平面内的射影所成的角.当直线和平面平行时,称直线和平面成0°角,当直线和平面垂直时,称直线和平面成90°角.[典型例题](2024·湖南省五市十校联考)已知E,F分别是三棱锥PABC的棱AP,BC的中点,AB=6,PC=6,EF=3eq\r(3),则异面直线AB与PC所成的角为()A.120° B.45°C.30° D.60°【解析】设AC的中点为G,连接GF,EG,因为E,F分别是三棱锥PABC的棱AP,BC的中点,PC=6,AB=6,所以EG∥PC,GF∥AB,EG=3,GF=3,在△EFG中,EF=3eq\r(3),所以cos∠EGF=eq\f(9+9-27,2×3×3)=-eq\f(1,2),所以∠EGF=120°,所以异面直线AB与PC所成的角为60°.【答案】Deq\a\vs4\al()求空间角的一般步骤(1)找出或作出有关的平面角.(2)证明它符合定义.(3)归到某一三角形中进行计算,为了便于记忆,可总结口诀:“一作、二证、三计算”.[对点训练]1.(2024·高考全国卷Ⅱ)已知圆锥的顶点为S,母线SA,SB相互垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为________.解析:由题意画出图形,如图,设AC是底面圆O的直径,连接SO,则SO是圆锥的高.设圆锥的母线长为l,则由SA⊥SB,△SAB的面积为8,得eq\f(1,2)l2=8,得l=4.在Rt△ASO中,由题意知∠SAO=30°,所以SO=eq\f(1,2)l=2,AO=eq\f(\r(3),2)l=2eq\r(3).故该圆锥的体积V=eq\f(1,3)π×AO2×SO=eq\f(1,3)π×(2eq\r(3))2×2=8π.答案:8π2.(2024·福州市质量检测)已知长方体ABCDA1B1C1D1的外接球体积为eq\f(32,3)π,且AA1=BC=2,则A1C与平面BB1C1C所成的角为______.解析:如图,设长方体ABCDA1B1C1D1的外接球半径为R,则长方体ABCDA1B1C1D1的外接球体积为eq\f(4,3)πR3=eq\f(32,3)π,所以R=2,即A1C=eq\r(AAeq\o\al(2,1)+BC2+AB2)=2R=4.因为AA1=BC=2,所以AB=2eq\r(2).连接B1C,因为A1B1⊥平面BB1C1C,所以A1C与平面BB1C1C所成的角为∠A1CB1,在Rt△BB1C中,BB1=BC=2,所以B1C=2eq\r(2)=A1B1,所以∠A1CB1=eq\f(π,4).即A1C与平面BB1C1C所成的角为eq\f(π,4).答案:eq\f(π,4)空间平行、垂直关系的证明(综合型)[学问整合]直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.[典型例题](2024·高考全国卷Ⅰ)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解】(1)证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=eq\f(1,2)B1C.又因为N为A1D的中点,所以ND=eq\f(1,2)A1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,所以MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H.由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.从而CH⊥平面C1DE,故CH的长即为点C到平面C1DE的距离.由已知可得CE=1,C1C=4,所以C1E=eq\r(17),故CH=eq\f(4\r(17),17).从而点C到平面C1DE的距离为eq\f(4\r(17),17).eq\a\vs4\al()平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.[对点训练])1.(2024·昆明市诊断测试)如图,在四棱锥PABCD中,底面ABCD是平行四边形,PD⊥平面ABCD,AD=BD=6,AB=6eq\r(2),E是棱PC上的一点.(1)证明:BC⊥平面PBD;(2)若PA∥平面BDE,求eq\f(PE,PC)的值.解:(1)证明:由已知条件可知AD2+BD2=AB2,所以AD⊥BD.因为PD⊥平面ABCD,所以PD⊥AD.又PD∩BD=D,所以AD⊥平面PBD.因为四边形ABCD是平行四边形,所以BC∥AD,所以BC⊥平面PBD.(2)连接AC交BD于F,连接EF,则EF是平面PAC与平面BDE的交线.因为PA∥平面BDE,所以PA∥EF.因为F是AC的中点,所以E是PC的中点,所以eq\f(PE,PC)=eq\f(1,2).2.(2024·广东省七校联考)如图,在四棱锥PABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=2,E是AB的中点,G是PD的中点.(1)求四棱锥PABCD的体积;(2)求证:AG∥平面PEC;(3)求证:平面PCD⊥平面PEC.解:(1)易知V四棱锥PABCD=eq\f(1,3)S正方形ABCD·PA=eq\f(1,3)×2×2×2=eq\f(8,3).(2)证明:如图,取PC的中点F,连接EF和FG,则易得AE∥FG,且AE=eq\f(1,2)CD=FG,所以四边形AEFG为平行四边形,所以EF∥AG.因为EF⊂平面PEC,AG⊄平面PEC,所以AG∥平面PEC.(3)证明:易知CD⊥AD,CD⊥PA,因为PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD.又AG⊂平面PAD,所以CD⊥AG.易知PD⊥AG,因为PD∩CD=D,PD⊂平面PCD,CD⊂平面PCD,所以AG⊥平面PCD,所以EF⊥平面PCD.又EF⊂平面PEC,所以平面PEC⊥平面PCD.空间中的折叠问题和探究性问题(综合型)[典型例题](2024·高考全国卷Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解】(1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)如图,取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=eq\r(3),故DM=2.所以四边形ACGD的面积为4.eq\a\vs4\al()(1)求解平面图形折叠问题的关键和方法①关键:分清翻折前后位置关系和数量关系哪些变更,哪些不变,抓住翻折前后不变的量,尤其是垂直关系,充分利用原平面图形的信息是解决问题的突破口.②方法:把平面图形翻折后,经过恰当连线就能得到三棱锥、四棱锥等几何体,从而把问题转化到我们熟识的几何何体中解决.(2)探究性问题求解的途径和方法①对命题条件探究的三种途径i.先猜后证,即先视察,尝试给出条件再证明.ii.先通过命题成立的必要条件探究出命题成立的条件,再证明充分性.iii.将几何问题转化为代数问题,探究出命题成立的条件.②对命题结论的探究方法从条件动身,探究出要求的结论是什么,对于探究结论是否存在,求解时常假设结论存在,再找寻与条件相容或者冲突的结论.[对点训练](2024·郑州市其次次质量预料)如图,四棱锥PABCD中,底面ABCD是边长为2的菱形,∠BAD=eq\f(π,3),△PAD是等边三角形,F为AD的中点,PD⊥BF.(1)求证:AD⊥PB.(2)若E在线段BC上,且EC=eq\f(1,4)BC,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求出三棱锥DCEG的体积;若不存在,请说明理由.解:(1)证明:连接PF,因为△PAD是等边三角形,所以PF⊥AD.因为底面ABCD是菱形,∠BAD=eq\f(π,3),所以BF⊥AD.又PF∩BF=F,所以AD⊥平面BFP,又PB⊂平面BFP,所以AD⊥PB.(2)能在棱PC上找到一点G,使平面DEG⊥平面ABCD.由(1)知AD⊥BF,因为PD⊥BF,AD∩PD=D,所以BF⊥平面PAD.又BF⊂平面ABCD,所以平面ABCD⊥平面PAD,又平面ABCD∩平面PAD=AD,且PF⊥AD,所以PF⊥平面ABCD.连接CF交DE于点H,过H作HG∥PF交PC于G,所以GH⊥平面ABCD.又GH⊂平面DEG,所以平面DEG⊥平面ABCD.因为AD∥BC,所以△DFH∽△ECH,所以eq\f(CH,HF)=eq\f(CE,DF)=eq\f(1,2),所以eq\f(CG,GP)=eq\f(CH,HF)=eq\f(1,2),所以GH=eq\f(1,3)PF=eq\f(\r(3),3),所以VDCEG=VGCDE=eq\f(1,3)S△CDE·GH=eq\f(1,3)×eq\f(1,2)DC·CE·sineq\f(π,3)·GH=eq\f(1,12).一、选择题1.已知m,n,l1,l2表示直线,α,β表示平面.若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥α B.m∥β且n∥βC.m∥β且n∥l2 D.m∥l1且n∥l2解析:选D.由定理“假如一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”知,由选项D可推知α∥β.2.设m,n是两条不同的直线,α,β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析:选C.对A,若m⊥n,n∥α,则m⊂α或m∥α或m与α相交,错误;对B,若m∥β,β⊥α,则m⊂α或m∥α或m与α相交,错误;对C,若m⊥β,n⊥β,n⊥α,则m⊥α,正确;对D,若m⊥n,n⊥β,β⊥α,则m与α相交或m⊂α或m∥α,错误.故选C.3.(2024·长春市质量监测(一))在正方体ABCDA1B1C1D1中,直线A1C1与平面ABC1D1所成角的正弦值为()A.1 B.eq\f(\r(3),2)C.eq\f(\r(2),2) D.eq\f(1,2)解析:选D.由题意画出图形如图所示,取AD1的中点为O,连接OC1,OA1,易知OA1⊥平面ABC1D1,所以∠A1C1O是直线A1C1与平面ABC1D1所成的角,在Rt△OA1C1中,A1C1=2OA1,所以sin∠A1C1O=eq\f(OA1,A1C1)=eq\f(1,2).故选D.4.(2024·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线解析:选B.如图,取CD的中点F,连接EF,EB,BD,FN,因为△CDE是正三角形,所以EF⊥CD.设CD=2,则EF=eq\r(3).因为点N是正方形ABCD的中心,所以BD=2eq\r(2),NF=1,BC⊥CD.因为平面ECD⊥平面ABCD,所以EF⊥平面ABCD,BC⊥平面ECD,所以EF⊥NF,BC⊥EC,所以在Rt△EFN中,EN=2,在Rt△BCE中,EB=2eq\r(2),所以在等腰三角形BDE中,BM=eq\r(7),所以BM≠EN.易知BM,EN是相交直线.故选B.5.在四面体ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M为AB的中点,则线段CM的长为()A.eq\r(2) B.eq\r(3)C.eq\f(\r(3),2) D.eq\f(\r(2),2)解析:选C.如图所示,取BD的中点O,连接OA,OC,因为AB=AD=BC=CD=1,所以OA⊥BD,OC⊥BD.又平面ABD⊥平面BCD,所以OA⊥平面BCD,OA⊥OC.又AB⊥AD,所以DB=eq\r(2),取OB的中点N,连接MN,CN,所以MN∥OA,MN⊥平面BCD,所以MN⊥CN.所以CM=eq\r(MN2+CN2)=eq\f(\r(3),2).6.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列结论正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC解析:选D.因为在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,所以BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.又AB⊂平面ABC,所以平面ADC⊥平面ABC.二、填空题7.已知直线l⊥平面α,直线m⊂平面β,则下列四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.解析:直线l⊥平面α,直线m⊂平面β,当α∥β有l⊥m,故①正确.当α⊥β有l∥m或l与m异面或相交,故②不正确.当l∥m有α⊥β,故③正确.当l⊥m有α∥β或α与β相交,故④不正确.综上可知①③正确.答案:①③8.(2024·成都第一次诊断性检测)在各棱长均相等的直三棱柱ABCA1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为______.解析:如图,取AA1的中点P,连接PN,PB,则由直三棱柱的性质可知A1M∥PB,则∠PBN为异面直线A1M与BN所成的角(或其补角).设三棱柱的棱长为2,则PN=eq\r(2),PB=eq\r(5),BN=eq\r(3),所以PN2+BN2=PB2,所以∠PNB=90°,在Rt△PBN中,tan∠PBN=eq\f(PN,BN)=eq\f(\r(2),\r(3))=eq\f(\r(6),3).答案:eq\f(\r(6),3)9.如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.解析:作CH⊥AB于点H,连接PH.因为PC⊥平面ABC,所以PH⊥AB,即PH为PM的最小值.在△ABC中,因为∠ACB=90°,AB=8,∠ABC=60°,所以BC=4,所以CH=2eq\r(3).因为PC=4,所以PH=2eq\r(7).答案:2eq\r(7)三、解答题10.如图,在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面PAB;(2)求三棱锥PABM的体积.解:(1)证明:因为M,N分别为PD,AD的中点,所以MN∥PA,又MN⊄平面PAB,PA⊂平面PAB,所以MN∥平面PAB.在Rt△ACD中,∠CAD=60°,CN=AN,所以∠ACN=60°.又∠BAC=60°,所以CN∥AB.因为CN⊄平面PAB,AB⊂平面PAB,所以CN∥平面PAB.又CN∩MN=N,所以平面CMN∥平面PAB.(2)由(1)知,平面CMN∥平面PAB,所以点M到平面PAB的距离等于点C到平面PAB的距离.因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=eq\r(3),所以三棱锥PABM的体积V=VMPAB=VCPAB=VPABC=eq\f(1,3)×eq\f(1,2)×1×eq\r(3)×2=eq\f(\r(3),3).11.(2024·高考北京卷)如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.解:(1)证明:因为PA⊥平面ABCD,所以PA⊥BD.又因为底面ABCD为菱形,所以BD⊥AC.所以BD⊥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理资本与学习动力企业培训的新视角
- 教育技术在远程办公中的实践与思考
- 教育品牌在数字时代的品牌塑造与传播
- 培养孩子学习兴趣从心理学角度出发的教育方法探讨
- 教育行业未来趋势与学习路劲规划
- 智慧教育与学生学习动力的关系研究
- 从数据泄露看教育技术的伦理困境
- 教育心理学与教师决策实践与探索
- 中职思政课课件
- 2025届安徽省池州一中物理高一下期末教学质量检测试题含解析
- CJ/T 461-2014水处理用高密度聚乙烯悬浮载体填料
- 小学保洁承包协议书
- 重庆中考:数学高频考点
- 厂房围墙承包协议书
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读
- 熊猫旅居签署协议书
- 心衰药物治疗进展课件
- 化工仪表管理与维护
- 2024年“蓝桥杯”科学素养竞赛考试题库(含答案)
- 风力发电运维值班员(技师)职业技能鉴定考试题(附答案)
- 2025年上半年潜江市城市建设发展集团招聘工作人员【52人】易考易错模拟试题(共500题)试卷后附参考答案
评论
0/150
提交评论