第二章应用统计分析检验_第1页
第二章应用统计分析检验_第2页
第二章应用统计分析检验_第3页
第二章应用统计分析检验_第4页
第二章应用统计分析检验_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章应用统计分析检验假设检验所谓假设检验,就就是事先对总体参数或总体分布形式作出一个假设,然后利用样本信息来判断原假设就是否合理,即判断样本信息与原假设就是否有显著差异,从而决定就是否接受或否定原假设。1、假设检验采用得逻辑推理方法就是反证法

为了检某假设就是否成立,先假定它正确,然后根据样本信息,观察由此假设而导致得结果就是否合理,从而判断就是否接受原假设;判断结果合理与否,就是基于“小概率事件不易发生”这一原理得即在一次抽样中,小概率事件不可能发生。如果在原假设下发生了小概率事件,则认为原假设就是不合理得;反之,小概率事件没有发生,则认为原假设就是合理得。2、假设检验就是基于样本资料来推断总体特征得,而这种推断就是在一定概率置信度下进行得,而非严格得逻辑证明。因此,置信度大小得不同,有可能做出不同得判断。三、假设检验中得两类错误由于假设检验就是根据有限得样本信息来推断总体特征,由样本得随机性可能致使判断出错。(一)第一类错误当原假设为真时,而拒绝原假设所犯得错误,称为第I类错误或拒真错误。易知犯第I类错误得概率就就是显著性水平

P{拒绝H0|H0为真}=

(二)第二类错误

当原假设为假时,而接受原假设所犯得错误,称为第II类错误或取伪错误。犯第II类错误得概率常用

表示

P{接受H0|H0不正确}=

H0:无罪陪审团审判裁决实际情况无罪有罪无罪正确错误有罪错误正确H0检验决策实际情况H0为真H0为假未拒绝H0正确决策(1–

a)第Ⅱ类错误(b)拒绝H0第Ⅰ类错误(a)正确决策(1-b)假设检验就好像一场审判过程统计检验过程原假设H0结论真实错误拒绝H0第I类错误α正确1-β接受H0正确1-α第II类错误β1、犯第一类错误与犯第二类错误得概率存在此消彼长得关系;

2、若要同时减少

,须增大样本容量n。

3、通常得作法就是,取显著性水平较小,即控制犯第一类错误得概率在较小得范围内;

4、在犯第二类错误得概率不好控制时,将“接受原假设”更倾向于说成“不拒绝原假设”。注意:假设检验得步骤(1)建立检验假设与确定检验水准(2)选定检验方法与计算检验统计量(3)确定P值与做出推断结论(1)建立检验假设与确定检验水准在均数得比较中,检验假设就是针对总体特征而言,包括相互对立得两个方面,即两种假设:原假设为正待检验得假设:H0;备择假设为可供选择得假设:H1

一般地,假设有三种形式:

(1)双侧检验:

H0:

0;H1:0

(2)左侧检验:

H0:

0;H1:<0

或H0:

0;H1:<0

(3)右侧检验:

H0:

0;H1:>0

或H0:<=0;H1:>0

双侧检验与单侧检验在进行t检验时,如果其目得在于检验两个总体均数就是否相等,即为双侧检验。例如检验某种新降压药与常用降压药效力就是否相同?就就是说,新药效力可能比旧药好,也可能比旧药差,或者力相同,都有可能。如果我们已知新药效力不可能低于旧药效力,例如磺胺药+磺胺增效剂从理论上推知其效果不可能低于单用磺胺药,这时,无效假设为H0,备择假设为H1:u1>u2,统计上成为单侧检验。

(2)选择显著性水平当原假设H0为真时,却因为样本指标得差异而被否定,这种否定真实得原假设得概率就就是显著性水平。用α表示。α=0、05(即5%)或α=0、01(即1%)ho,h1与α得确定,以及单侧检验或双侧检验得选择,都应结合研究设计,在未获得样本结果之前决定,而不受样本结果得影响。大家有疑问的,可以询问和交流可以互相讨论下,但要小声点(3)确定P值与做出推断结论P值就是指由ho成立时得检验统计量出现在由样本计算出来得检验统计量得末端或更末端处得概率值。当P≤α时,结论为按所取检验水准拒绝ho,接受h1,这样做出结论得理由就是:在ho成立得条件下,出现等于及大于现有检验统计量值得概率P≤α,就是小概率事件,这在一次抽样中就是不大可能发生得,即现有样本信息不支持ho因而拒绝它;如P>α,即样本信息支持ho,就没有理由拒绝它,此时只好接受它。t检验t检验亦称studentt检验。t检验得用途:–

样本均数与总体均数得比较,即单样本t检验–

来自于同一总体彼此独立得两个不同样本,比较不同类别得显著性差异,即独立样本t检验–

两样本均数得比较,即配对样本t检验•t检验得应用条件:–

当样本数较小时,要求样本取自正态总体;–

做两样本均数比较时,还要求两样本得总体方差相等(1)已知一个总体均数u;(2)可得到一个样本均数及该样本标准差;(3)样本来自正态或近似正态总体。T检验计算方式

样本均数与总体均数得比较得t检验,即单样本t检验。比较得目得就是推断样本所代表得未知总体均数μ与已知得总体均数uo有无差别。首先对所估计得总体提出一个假设,如:假设这个总体得平均数μ等于某个值uo,然后通过样本去推断这个假设就是否可以接受,如果可以接受,样本很可能来自这个总体;否则很可能不就是来自这个总体、单样本得T检验【例1】一种汽车配件得平均长度要求为12cm,高于或低于该标准均被认为就是不合格得。汽车生产企业在购进配件时,通常就是经过招标,然后对中标得配件提供商提供得样品进行检验,以决定就是否购进。现对一个配件提供商提供得10个样本进行了检验。假定该供货商生产得配件长度服从正态分布,在0、05得显著性水平下,检验该供货商提供得配件就是否符合要求?10个零件尺寸得长度(cm) 12、2 10、8 12、0 11、8 11、912、4 11、3 12、2 12、0 12、3H0

:

=12检验统计量:H1

:

12

=0、05df=10-1=9临界值(c):决策:不拒绝ho

结论:该供货商提供零件符合要求t02.262-2.2620.025拒绝H0拒绝H00.025独立样本得T检验要求:a、被比较得两组样本彼此独立,没有配对关系b、两组样本均来自正态总体c、均值就是对于检验有意义得描述统计量两组样本方差相等与不等时使用得计算t值得公式不同。因此应该先对方差进行齐次性检验。SPSS得输出,在给出方差齐与不齐两种计算结果得t值,与t检验得显著性概率得同时,还给出对方差齐次性检验得F值与F检验得显著性概率。用户需要根据F检验得结果自己判断选择t检验输出中得哪个结果,得出最后结论。进行方差齐次检验使用F检验。对应得零假设就是:两组样本方差相等。概率p<0、05时,否定原假设,说明方差不齐;否则两组方差无显著性差异。菜单:分析->比较均值->独立样本T检验(T)检验变量:要求平均值得变量分组变量(只能分成两组):1,2结果中比较有用得值:方差齐次性检验F得Sig与方差相等或不相等得Sig(Sig为显著性概率值)例2:下表为某银行中得男女职工中3月份得工资表,试分析出该银行男女雇员得平均工资就是否有显著性差异。(置信区间百分比为95%)雇员编号性别工资101男5300102男5600103女5550104男4000105女4600106女4300107男5100108女5900109女5200110男4100111女4600112男4700分析:根据上表建立数据集如下:独立样本T检验对话框及设置:输出结果:P值=0、712>0、05,应接受原假设,即可以认为该银行男女雇员得工资不存在显著差异。在SPSS中,P值被定义为所对应t值分布一侧面积得双倍。因为双侧检验时,可直接比较P值与α值得大小;若为单侧检验,则需比较P值与2α值得大小。配对样本得t检验配对设计就是将受试对象按一定条件配成对子,再随机分配每对中得两个受试对象到不同处理组。配对因素就是影响实验效应得主要非处理因素。

-例如,在动物实验中,常将窝别、性别相同,体重相近得两个动物配成对子;

-人群试验中,常将性别相同、年龄相近得两个人配成对子,这样可提高各处理组间得均衡性。配对样本分三种情况:–

配成对子得同对受试对象分别给予两种不同得处理,其目得就是推断两种处理得效果有无差别;–

同一受试对象分别接受两种不同处理,其目得就是推断两种处理得效果有无差别;–

同一受试对象处理前后得比较,其目得就是推断某种处理有无作用。用于检验两配对总体得均值就是否具有显著性差异(其前提就是两样本具有配对关系,且其来自得总体均服从正态分布)实质就是检验每对测量值差值变量得均值与零之间差异得显著性,若差异不显著,则说明配对变量均值之间得差异不显著;公式:对于配对样本数据,应该首先计算出各对差值得均数。当两种处理结果无差别或某种处理不起作用时,理论上差值得总体均数应该为0,故可将配对样本资料得假设检验视为样本均数与总体均数=0得比较,所用方法为配对t检验为差值d得标准差。操作:菜单:分析->比较均值->配对样本T检验(P)注:成对变量(V):设置配对变量例310个高血压患者在施以体育疗法前后测定舒张压,要求判断体育疗法对降低血压是否有效,数据编号为3。

患者编号疗法前疗法后

1 2 3 4 5 6 7 8 9 10 112113134 110 125 117 108 120 118 138 10496103901081199290102121配对样本t检验实例:分析:根据述信息建立数据集如下:配对样本T检验对话框与设置:指定配对变量输出结果:P值=0、000<0、05,应拒绝原假设,表明体育疗法对降低血压有效。配对样本t检验与独立样本t检验得区别:

1、独立样本过程用于检验两个独立样本就是否来自具有相同均值得总体。配对样本用于检验两个相关得样本就是否来自具有相同均值得正态总体。

2、

独立样本就是指不同样本平均数得比较,而配对样本往往就是对相同样本二次平均数得检验。

启示:假设检验注意事项35二、假设检验应注意得问题1、要有严密得研究设计这就是假设检验得前提。组间应均衡,具有可比性,也就就是除对比得主要因素(如临床试验用新药与对照药)外,其它可能影响结果得因素(如年龄、性别、病程、病情轻重等)在对比组间应相同或相近(控制变量)。保证均衡性得方法主要就是从同质总体中随机抽取样本,或随机分配样本。362、不同得资料应选用不同检验方法应根据分析目得、资料类型以及分布、设计方案得种类、样本含量大小等选用适当得检验方法。如:配对设计得计量资料采用配对t检验。373、正确理解“显著性”一词得含义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论