




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年陕西汉中市汉台区县3月高三押题测试卷(1)数学试题(理工农医类)试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.32.已知向量满足,且与的夹角为,则()A. B. C. D.3.已知双曲线C:=1(a>0,b>0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为()A. B. C.2 D.+14.已知,,是平面内三个单位向量,若,则的最小值()A. B. C. D.55.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定6.已知为虚数单位,复数,则其共轭复数()A. B. C. D.7.已知各项都为正的等差数列中,,若,,成等比数列,则()A. B. C. D.8.已知,,,若,则正数可以为()A.4 B.23 C.8 D.179.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()A.4 B.6 C.3 D.810.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]11.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为()A. B. C. D.12.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()A. B. C.10 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.14.从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,则事件“抽到的产品不是一等品”的概率为________15.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.16.已知函数的图象在点处的切线方程是,则的值等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.18.(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.19.(12分)如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.20.(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点,是上异于,的点,.(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.22.(10分)已知函数.(1)讨论的零点个数;(2)证明:当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由点到直线距离公式建立的等式,变形后可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.2.A【解析】
根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.本题主要考查数量积的运算,属于基础题.3.B【解析】
以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),,.故选:B.本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.4.A【解析】
由于,且为单位向量,所以可令,,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果.【详解】解:设,,,则,从而,等号可取到.故选:A此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.5.C【解析】
由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.本题考查了函数的增减性及导数的应用,属中档题.6.B【解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.本题考查复数的乘法运算以及共轭复数的概念,难度较易.7.A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.8.C【解析】
首先根据对数函数的性质求出的取值范围,再代入验证即可;【详解】解:∵,∴当时,满足,∴实数可以为8.故选:C本题考查对数函数的性质的应用,属于基础题.9.A【解析】
根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,,则,即,故函数在上单调递增,故,令,,故,故函数在上的最大值为4.故选:A.本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.10.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.11.A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(当且仅当ex﹣a=4ea﹣x,即x=a+ln1时,等号成立);故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A.12.D【解析】
直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由已知可得、的坐标,求得的垂直平分线方程,联立已知直线方程与椭圆方程,求得的垂直平分线方程,两垂直平分线方程联立求得外心的横坐标,再由导数求最值.【详解】如图,由已知条件可知,不妨设,则外心在的垂直平分线上,即在直线,也就是在直线上,联立,得或,的中点坐标为,则的垂直平分线方程为,把代入上式,得,令,则,由,得(舍)或.当时,,当时,.当时,函数取极大值,亦为最大值.故答案为:.本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题.14.0.35【解析】
根据对立事件的概率和为1,结合题意,即可求出结果来.【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,,抽到不是一等品的概率是,故答案为:.本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题.15.【解析】
把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案.【详解】,,则,的共轭复数在复平面内对应点的坐标为,故答案为本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题.16.【解析】
利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或;(2).【解析】
(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围.【详解】(1)曲线C的极坐标方程是化为直角坐标方程为:直线的直角坐标方程为:圆心到直线l的距离(弦心距)圆心到直线的距离为:或(2)曲线的方程可化为,其参数方程为:为曲线上任意一点,的取值范围是18.(1)或;(2).【解析】
(1)时,分类讨论,去掉绝对值,分类讨论解不等式.(2)时,分类讨论去绝对值,得到解析式,由函数的单调性可得的最小值,通过恒成立问题,得到关于的不等式,得到的取值范围.【详解】(1)因为,所以,所以不等式等价于或或,解得或.所以不等式的解集为或.(2)因为,所以,根据函数的单调性可知函数的最小值为,因为恒成立,所以,解得.所以实数的取值范围是.本题考查分类讨论去绝对值,分段函数求最值,不等式恒成立问题,属于中档题.19.(1)见解析(2)【解析】
(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.【详解】(1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.20.(1);(2).【解析】
(1)令可求得的值,令时,由可得出,两式相减可得的表达式,然后对是否满足在时的表达式进行检验,由此可得出数列的通项公式;(2)求出数列的通项公式,对分奇数和偶数两种情况讨论,利用奇偶分组求和法结合等差数列和等比数列的求和公式可求得结果.【详解】(1),当时,;当时,由得,两式相减得,.满足.因此,数列的通项公式为;(2).①当为奇数时,;②当为偶数时,.综上所述,.本题考查数列通项的求解,同时也考查了奇偶分组求和法,考查计算能力,属于中等题.21.(1)详见解析;(2).【解析】
(1)由直径所对的圆周角为,可知,通过计算,利用勾股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中,,所以为直角三角形,且.因为,,所以.因为,,,所以平面.又平面,所以平面平面.(2)由已知,以为坐标原点,分别以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,,,,,,.设平面的一个法向量为,则即,取,得.设平面的法向量,则即,取,得.所以,又二面角为锐角,所以二面角的余弦值为.本题考查了利用线面垂直判定面面垂直、利用空间向量数量积求二面角的余弦值问题.22.(1)见解析(2)见解析【解析】
(1)求出,分别以当,,时,结合函数的单调性和最值判断零点的个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年耐热型肉糜粉项目投资价值分析报告
- 2025至2030年氨压力表项目投资价值分析报告
- 2025至2030年摄像机平台项目投资价值分析报告
- 2025至2030年多功能解毒净化器项目投资价值分析报告
- 非破坏性试验(电气试验课件)
- 2025至2030年前后组合灯项目投资价值分析报告
- 2025至2030年中国滚动式验讫章项目投资可行性研究报告
- 2025至2030年中国水上加油船行业市场运行格局及战略咨询研究报告
- 2025至2030年中国8K超高清电视行业市场预测与投资规划分析报告
- 宠物鉴赏试题库及答案
- 基于区块链的数据共享与存储机制-全面剖析
- 8.5.2.1 直线与平面平行的判定 课件高一下学期数学人教A版(2019)必修第二册
- 9.3 公正司法 课件高中政治统编版必修三政治与法治
- 2025年上半年山东青岛西海岸新区“优才”专业化干部选聘40人重点基础提升(共500题)附带答案详解
- GB/T 45355-2025无压埋地排污、排水用聚乙烯(PE)管道系统
- 5.2基本政治制度 课 件 2024-2025学年统编版道德与法治八年级下册
- 《提振消费专项行动方案》专题讲座
- 人教五四 六年级 下册 语文 第五单元《中国有能力解决好吃饭问题 第一课时》课件
- 北京中考语文常考知识点(积累背诵)-2025年北京中考语文二轮复习
- 2025年企业市场推广服务合同模板
- 2025年新高考政治二轮复习:高分答题模版(含练习题及答案)
评论
0/150
提交评论