2025届北京市师大附中招生全国统一考试“猜想卷”:数学试题_第1页
2025届北京市师大附中招生全国统一考试“猜想卷”:数学试题_第2页
2025届北京市师大附中招生全国统一考试“猜想卷”:数学试题_第3页
2025届北京市师大附中招生全国统一考试“猜想卷”:数学试题_第4页
2025届北京市师大附中招生全国统一考试“猜想卷”:数学试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市师大附中招生全国统一考试“猜想卷”:数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则的值为()A. B.C. D.2.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是()A. B. C. D.3.函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)4.函数且的图象是()A. B.C. D.5.函数的部分图像大致为()A. B.C. D.6.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题①的值域为②的一个对称轴是③的一个对称中心是④存在两条互相垂直的切线其中正确的命题个数是()A.1 B.2 C.3 D.47.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A. B. C. D.8.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③ B.①② C.①③ D.②③9.若集合,,则A. B. C. D.10.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元11.已知集合,集合,那么等于()A. B. C. D.12.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在矩形中,为边的中点,,,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为.14.已知函数,则曲线在处的切线斜率为________.15.已知实数,满足,则目标函数的最小值为__________.16.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)贫困人口全面脱贫是全面建成小康社会的标志性指标.党的十九届四中全会提出“坚决打赢脱贫攻坚战,建立解决相对贫困的长效机制”对当前和下一个阶段的扶贫工作进行了前瞻性的部署,即2020年要通过精准扶贫全面消除绝对贫困,实现全面建成小康社会的奋斗目标.为了响应党的号召,某市对口某贫困乡镇开展扶贫工作.对某种农产品加工生产销售进行指导,经调查知,在一个销售季度内,每售出一吨该产品获利5万元,未售出的商品,每吨亏损2万元.经统计,两市场以往100个销售周期该产品的市场需求量的频数分布如下表:市场:需求量(吨)90100110频数205030市场:需求量(吨)90100110频数106030把市场需求量的频率视为需求量的概率,设该厂在下个销售周期内生产吨该产品,在、两市场同时销售,以(单位:吨)表示下一个销售周期两市场的需求量,(单位:万元)表示下一个销售周期两市场的销售总利润.(1)求的概率;(2)以销售利润的期望为决策依据,确定下个销售周期内生产量吨还是吨?并说明理由.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.19.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.20.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?21.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是-1;(2)若,,成等比数列,求直线的方程.22.(10分)如图,在四棱锥中,平面,,为的中点.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.2.C【解析】

将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边.易求得,由,知,由余弦定理知其中,∴故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.3.D【解析】

由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.4.B【解析】

先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.5.A【解析】

根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.6.C【解析】

由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.【详解】由题,,则向右平移个单位可得,,的值域为,①错误;当时,,所以是函数的一条对称轴,②正确;当时,,所以的一个对称中心是,③正确;,则,使得,则在和处的切线互相垂直,④正确.即②③④正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.7.D【解析】

由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.8.B【解析】

由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所.则直线与直线的斜率乘积为.所以①正确.将代入抛物线的方程可得,,从而,,根据抛物线的对称性可知,,两点关于轴对称,所以直线轴.所以②正确.如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以③不正确.故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.9.C【解析】

解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.10.D【解析】

用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.11.A【解析】

求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.12.C【解析】

设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.14.【解析】

求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.15.-1【解析】

作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题16.【解析】

由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径.【详解】由题意可知:多面体的外接球即正四面体的外接球作面交于,连接,如图则,且为外接球的直径,可得,设三角形的外接圆的半径为,则,解得,设外接球的半径为,则可得,即,解得,设正三棱锥的高为,因为,所以,所以,而,所以正三棱锥的三条侧棱两两相互垂直,所以,设内切球的半径为,,即解得:.故答案为:.【点睛】本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)吨,理由见解析【解析】

(1)设“市场需求量为90,100,110吨”分别记为事件,,,“市场需求量为90,100,110吨”分别记为事件,,,由题可得,,,,,,代入,计算可得答案;(2)可取180,190,200,210,220,求出吨和吨时的期望,比较大小即可.【详解】(1)设“市场需求量为90,100,110吨”分别记为事件,,,“市场需求量为90,100,110吨”分别记为事件,,,则,,,,,,;(2)可取180,190,200,210,220,当时,当时,.,时,平均利润大,所以下个销售周期内生产量吨.【点睛】本题考查离散型随机变量的期望,是中档题.18.(1)(2)与交点的极坐标为,和【解析】

(1)先把曲线化成直角坐标方程,再化简成极坐标方程;(2)联立曲线和曲线的方程解得即可.【详解】(1)曲线的直角坐标方程为:,即.的参数方程化为极坐标方程为;(2)联立可得:,与交点的极坐标为,和.【点睛】本题考查了参数方程,直角坐标方程,极坐标方程的互化,也考查了极坐标方程的联立,属于基础题.19.(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)设圆心为M(m,0),根据相切得到,计算得到答案.(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程为,即x+ay+2﹣4a=0,过点M(2,0),计算得到答案.【详解】(2)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=2.因为m为整数,故m=2.故所求圆的方程为(x﹣2)2+y2=2.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().(3)设符合条件的实数a存在,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圆心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在实数使得过点P(﹣2,4)的直线l垂直平分弦AB.【点睛】本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.20.(1)(2)①②第一种抽奖方案.【解析】

(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率(2)①分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可②根据①得出结论.【详解】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)①若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获得返金劵金额为元,则可能的取值为60,100,140,180.则;;;.所以选择抽奖方案一,该顾客获得返金劵金额的数学期望为(元)若选择抽奖方案二,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论