2025届河北省唐山市滦县二中高三下学期第三次模拟考试数学试题_第1页
2025届河北省唐山市滦县二中高三下学期第三次模拟考试数学试题_第2页
2025届河北省唐山市滦县二中高三下学期第三次模拟考试数学试题_第3页
2025届河北省唐山市滦县二中高三下学期第三次模拟考试数学试题_第4页
2025届河北省唐山市滦县二中高三下学期第三次模拟考试数学试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省唐山市滦县二中高三下学期第三次模拟考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A. B. C. D.2.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.3.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10 B.32 C.40 D.804.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差5.在中,角的对边分别为,若.则角的大小为()A. B. C. D.6.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.67.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.8.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直9.已知倾斜角为的直线与直线垂直,则()A. B. C. D.10.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.11.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194 B.1695 C.311 D.109512.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种二、填空题:本题共4小题,每小题5分,共20分。13.如图所示的流程图中,输出的值为______.14.在中,内角的对边分别为,已知,则的面积为___________.15.若函数为偶函数,则________.16.已知数列满足,且恒成立,则的值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.18.(12分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点.(1)求证:.(2)若,求二面角的余弦值.19.(12分)已知,,不等式恒成立.(1)求证:(2)求证:.20.(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.21.(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.22.(10分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.2.B【解析】

设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.【点睛】本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.3.D【解析】

根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.4.C【解析】

根据题目所给图像,填写好表格,由表格数据选出正确选项.【详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【点睛】本题考查统计问题,考查数据处理能力和应用意识.5.A【解析】

由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.6.D【解析】

作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.7.D【解析】

讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.8.C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系9.D【解析】

倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.10.D【解析】

利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.11.D【解析】

确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.12.B【解析】

利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】

根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,,,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.14.【解析】

由余弦定理先算出c,再利用面积公式计算即可.【详解】由余弦定理,得,即,解得,故的面积.故答案为:【点睛】本题考查利用余弦定理求解三角形的面积,考查学生的计算能力,是一道基础题.15.【解析】

二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【详解】由为偶函数,知其一次项的系数为0,所以,,所以,故答案为:-5【点睛】本题考查由奇偶性求解参数,求函数值,属于基础题16.【解析】

易得,所以是等差数列,再利用等差数列的通项公式计算即可.【详解】由已知,,因,所以,所以数列是以为首项,3为公差的等差数列,故,所以.故答案为:【点睛】本题考查由递推数列求数列中的某项,考查学生等价转化的能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)最大值;最小值.【解析】

(1)结合极坐标和直角坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小值.【点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.18.(1)见解析(2)【解析】

(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;(2)以为轴建立空间直角坐标系,用空间向量法示二面角.【详解】(1)证明:连接,,.,,平面.平面,平面平面.,为的中点,.平面平面,平面.平面,.为斜边的中点,,(2),由(1)可知,为等腰直角三角形,则.以为坐标原点建立如图所示的空间直角坐标系,则,,,,则,记平面的法向量为由得到,取,可得,则.易知平面的法向量为.记二面角的平面角为,且由图可知为锐角,则,所以二面角的余弦值为.【点睛】本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角.在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解.19.(1)证明见解析(2)证明见解析【解析】

(1)先根据绝对值不等式求得的最大值,从而得到,再利用基本不等式进行证明;(2)利用基本不等式变形得,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【详解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即两边开平方得.同理可得,.三式相加,得.【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.20.(1)点M的极坐标为或(2)【解析】

(1)令,由此求得的值,进而求得点的极坐标.(2)设出两点的极坐标,利用勾股定理求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设点M在极坐标系中的坐标,由,得,∵∴或,所以点M的极坐标为或(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论