




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省衡阳市八中高三第二次调研联考数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,且,则在方向上的投影为()A. B. C. D.2.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.13.复数满足为虚数单位),则的虚部为()A. B. C. D.4.下列说法正确的是()A.“若,则”的否命题是“若,则”B.在中,“”是“”成立的必要不充分条件C.“若,则”是真命题D.存在,使得成立5.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.6.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为()A. B. C. D.7.若复数z满足,则()A. B. C. D.8.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A. B. C. D.9.若点是角的终边上一点,则()A. B. C. D.10.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A. B. C. D.11.已知,则的值等于()A. B. C. D.12.设集合,集合,则=()A. B. C. D.R二、填空题:本题共4小题,每小题5分,共20分。13.在△ABC中,()⊥(>1),若角A的最大值为,则实数的值是_______.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.15.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.16.如图,两个同心圆的半径分别为和,为大圆的一条直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括两点),则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.18.(12分)已知,函数的最小值为1.(1)证明:.(2)若恒成立,求实数的最大值.19.(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点.(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值.20.(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份—20140需求量—2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.21.(12分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.(1)求抛物线的方程及点的坐标;(2)求的最大值.22.(10分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由向量垂直的向量表示求出,再由投影的定义计算.【详解】由可得,因为,所以.故在方向上的投影为.故选:C.【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键.2、A【解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.3、C【解析】
,分子分母同乘以分母的共轭复数即可.【详解】由已知,,故的虚部为.故选:C.【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.4、C【解析】
A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故A错.B:在中,,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.5、C【解析】
由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.6、C【解析】
首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,,,,,,为的中点由球的性质可知:平面,,且.设,,,,在中,,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为.故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.7、D【解析】
先化简得再求得解.【详解】所以.故选:D【点睛】本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.8、B【解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(∈),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.9、A【解析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】
由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.11、A【解析】
由余弦公式的二倍角可得,,再由诱导公式有,所以【详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题12、D【解析】试题分析:由题,,,选D考点:集合的运算二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
把向量进行转化,用表示,利用基本不等式可求实数的值.【详解】,解得=1.故答案为:1.【点睛】本题主要考查平面向量的数量积应用,综合了基本不等式,侧重考查数学运算的核心素养.14、【解析】
①根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解;②结合①求出,根据面积公式即可得解.【详解】①2(sin32°•cos77°﹣cos32°•sin77°),②,,∴,∴.故答案为:.【点睛】此题考查平面向量与三角函数解三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.15、10【解析】
作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.16、【解析】
以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,从而可得、,,,然后利用向量数量积的坐标运算可得,再根据辅助角公式以及三角函数的性质即可求解.【详解】以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,则、,由,且,所以,所以,即又平分,所以,则,设,则,,所以,所以,,所以的最大值是.故答案为:【点睛】本题考查了向量数量积的坐标运算、利用向量解决几何问题,同时考查了辅助角公式以及三角函数的性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)用分类讨论思想去掉绝对值符号后可解不等式;(2)由(1)得的最小值为4,则由,代换后用基本不等式可得最小值.【详解】解:(1)讨论:当时,,即,此时无解;当时,;当时,.所求不等式的解集为(2)分析知,函数的最小值为4,当且仅当时等号成立.的最小值为4.【点睛】本题考查解绝对值不等式,考查用基本不等式求最小值.解绝对值不等式的方法是分类讨论思想.18、(1)2;(2)【解析】分析:(1)将转化为分段函数,求函数的最小值(2)分离参数,利用基本不等式证明即可.详解:(Ⅰ)证明:,显然在上单调递减,在上单调递增,所以的最小值为,即.(Ⅱ)因为恒成立,所以恒成立,当且仅当时,取得最小值,所以,即实数的最大值为.点睛:本题主要考查含两个绝对值的函数的最值和不等式的应用,第二问恒成立问题分离参数,利用基本不等式求解很关键,属于中档题.19、(1).(2)的周长为,时,的周长为【解析】
(1)设的方程为,根据题意由点到直线的距离公式可得,将直线方程与抛物线方程联立可得,设、坐标分别是、,利用韦达定理以及中点坐标公式消参即可求解.(2)根据抛物线的定义可得,由(1)可得,再利用弦长公式即可求解.【详解】(1)设的方程为于是联立设、坐标分别是、则设的中点坐标为,则消去参数得:(2)设,,由抛物线定义知,,∴由(1)知∴,,的周长为时,的周长为【点睛】本题考查了动点的轨迹方程、直线与抛物线的位置关系、抛物线的定义、弦长公式,考查了计算能力,属于中档题.20、(1)见解析;(2)能够满足.【解析】
(1)根据表中数据,结合以“年份—2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【详解】(1)由所给数据和已知条件,对数据处理表格如下:年份—2014024需求量—25701929(2)由题意可知,变量与之间具有线性相关关系,由(1)中表格可得,,,,.由上述计算结果可知,所求回归直线方程为,利用回归直线方程,可预测2020年的粮食需求量为:(万吨),因为,故能够满足该地区的粮食需求.【点睛】本题考查了线性回归直线的求法及预测应用,属于基础题.21、(1),;(2)1.【解析】
(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【详解】(1)∵点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,|PF|=3,∴23,解得:p=2,∴抛物线C的方程为y2=4x,∵点P(2,n)(n>0)在抛物线C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴设直线l的方程为:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0设A(x1,y1),B(x2,y2),则y1,y2是y2+4my﹣4=0的两个不同实根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饮料及冷饮服务行业直播电商战略研究报告
- 舞台表演宣传、组织、辅助服务企业制定与实施新质生产力战略研究报告
- KDS-801蒸汽锅炉阻垢剂行业跨境出海战略研究报告
- 体育经纪服务行业跨境出海战略研究报告
- 城市轨道交通设施行业直播电商战略研究报告
- 智慧矿山企业制定与实施新质生产力战略研究报告
- 日式茶道杯行业直播电商战略研究报告
- 蜡纸改正液行业直播电商战略研究报告
- 非营利机构财务透明度自查及整改措施
- GRC中波瓦行业直播电商战略研究报告
- 五年级下册语文第五单元《形形色色的人》习作一等奖创新教学设计
- 色织物工艺设计2
- 液压系统符号
- 中考化学专题考点训练提升19 气体的制备(解析版)
- 年会颁奖晚会颁奖盛典简约PPT模板
- 绥江县农村饮水安全工程水质检测中心建设方案
- 钳工-实操技能试题
- 三次函数的图象与性质
- GB/T 755-2019旋转电机定额和性能
- GB/T 33474-2016物联网参考体系结构
- 上消化道早癌筛查须知
评论
0/150
提交评论