中考数学一轮复习:专题18 绝对值贯穿有理数的八大经典题型(举一反三)(沪科版)(解析版)_第1页
中考数学一轮复习:专题18 绝对值贯穿有理数的八大经典题型(举一反三)(沪科版)(解析版)_第2页
中考数学一轮复习:专题18 绝对值贯穿有理数的八大经典题型(举一反三)(沪科版)(解析版)_第3页
中考数学一轮复习:专题18 绝对值贯穿有理数的八大经典题型(举一反三)(沪科版)(解析版)_第4页
中考数学一轮复习:专题18 绝对值贯穿有理数的八大经典题型(举一反三)(沪科版)(解析版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题L8绝对值贯穿有理数的八大经典题型

【沪科版】

♦题型梳理

【题型1利用绝对值的性质化简求值】............................................................1

【题型2利用绝对值的非负性求值】..............................................................3

【题型3根据字母的取值范围化简绝对值】........................................................4

【题型4利用绝对值的定义判断正误】............................................................6

【题型5利用绝对值的意义求字母取值范围】......................................................8

【题型6利用绝对值的意义分类讨论高问题】.....................................................10

|a|

【题型7分类讨论多绝对值问题】................................................................13

【题型8绝对值中最值问题】....................................................................15

,举一反三

【题型1利用绝对值的性质化简求值】

【例1】(2023春•江苏常州•七年级校考期中)如图表示在数轴上四个点p,q,r,s位置关系,若|p・r|=10,

|p-s|=12,|q-s|=9,则|q-r|=()

Pqr3

A.7B.9C.11D.13

【答案】A

【分析】根据绝对值的几何意义,将|p-r|=10,|p-s|=12,|q-s|=9转化为两点间的距离,进而可得q、r两点间

的距离,即可得答案.

【详解】解:根据绝对值的几何意义,

rh|p-r|=10.|p-s|=12.|q-s|=9可得

p、r两点间的距离为10,p、s两点间的距离为12,q、s两点间的距离为9,

则q、「两点间的距离为10+9-12=7,

即|q-r|=7,

故选A.

【点睛】本题考查绝对值的几何意义,|a-b|即两实数a、b表示两个点间的距离.

【变式1-1](2023春・山东威海•/'、年级校联考期中)有理数a、b,在数轴上的位置如图所示,化简|a+b|十

匕|-|。一切的结果为()

I|aI■、

C-1ao1b

A.-aB.aC.a+2cD.-a-2c

【答案】B

【分析】由数轴可知—1<QVO/>1,C<—I,|c|>|b|,然后进行去绝对值,进而问题可求解.

【详解】解:由数轴可得:-1<a<U,b>l,c<-1,©>网,

G+/?>0,c—b<0,

/.\a+b\+\c\—\c-b\=a+b-c+c—b=a;

故选B.

【点睛】本题主要考查数轴、绝对值,熟练掌握数轴、绝对值是解题的关键.

【变式1-2】(2023春・陕西西安•七年级西安市铁一中学校联考阶段练习)化简:|x-2|-|x+l|+|x-4|.

7—x,x<—1

5-3”,-1<x<2

【答案】[%-2|-|%+1|+|%-4|=

1-x,2<x<4

x—7,%>4

【详解】试题分析:要去掉绝对值符号,需知绝对值中式子的符号,x的取值是有理数范围内任一数,所以

要对X的取值分情况讨论,再去绝对值符号.

试题解析:

①当文<一1时,原式=(2-%)-(-%-1)+(4-%)=7-x

②当一1<x<2lM,原式=(2-A)-(x+1)+(4-x)=5-3x

③当2WxV4时,原式=(%-2)-(x+1)+(4-x)=1-x

④当%>4时,原式=(%-2)-(^4-1)+(%-4)=x-7

7—x,x<—1

51-^,2<1<42

(x-7,x>4

【变式1-3](2023春.仝国,七年级期末)已知|a|+a=0,3=一1,©=c,化简:\+2b\-\c-a\+

ua

\—b-a|=.

【答案】-a-3b-c

【分析】先确定a、b、c的正负,然后再去绝对值,最后化简求值即可.

【详解】解:・・,|a|+Q=0,粤=-l,|c|=c,

b

/.a<0,b<0»c>0

/.a+2b<0,c-a>0,-b-a>0

/.|a+2b\—|c—a|+\—b—a\=-(a+2b)-(c-a)+(-b-a)=-a-2b-c+a-b-a=-a-3b-c

故答案为・a-3b・c.

【点睛】本题考查了绝对值的相关知识,牢记非负数得绝对值是它本身,负数的绝对值为其相反数,是解答

本题的关键.

【题型2利用绝对值的非负性求值】

【例2】(2023春・天津和平七年级天津二十中校考期中)若有理数x、y满足⑶=3,|y+1|=4,且+y|二

-(x+y),求+的值.

【答案】6或8.

【分析】根据绝对值的性质解得x,y的值,分情况讨论得出符合条件的x,y的值,即可解..

【详解】・・・田=3,|y+l|=4,

Ax—3或—3,y—3或—5,

①当%=3,y=3时,+y|=6H-(x+y)=-6(舍去),

②当x=3,y=-5时,\x+y\=2=-(-x+y)=2,

|x|+|y|=8

③当%=-3,y=3时,+y|=0=-(%+y)=0,

田+仅1=6.

④当%=-3,y=-5时,+y|=8=—(x+y)=8,

KI+|y|=8.

则②3④满足,则|x|+|y|=6或8.

【变式2-1](2023春•七年级课时练习)已知(a+1)2+|力+5|=6+5,且|24一〃一1|=1,则岫=.

【答案】2或4.

【详解】解:根据平方数是非负数,绝对值是非负数的性质可得:|什1|沙,|什5|加,•・・(。+1)2+步+5|=b

+5,.\/?+5>0,:.(a+l)2+人+5=〃+5,:.(«+1)2=0,解得〃=一],b>-5,加一人一1|=1,.\|-2

T—1|=L/.|/?+3|=1>/./?+3=±1,,方=—4或。=-2,・••当o=-1,/?=—2时,ab=2;

当。=-1,b=-4时,ab=4.

故答案为2或4.

点睹:本题主要考查了绝对值是非负数,偶次方是非负数的性质,根据题意列出等式是解题的关键.

【变式2-2](2023春・重庆•七年级校考阶段练习)已知A,y均为整数,且田・卅工-3|=1,则工+),的值为一.

绝对值是其相反数是解本题的关键.

【变式3-1](2023春・全国•七年级专题练习)已知有理数。<一1,则化简|。+1|+|1-。|的结果是.

【答案】-2a

【分析】先根据已知条件判断每个绝对值里边的代数式的值是大于。还是小于0,再根据绝对值的性质去掉

绝对值符号,最后去括号,合并同类项即可.

【详解】,:a<-1,

KO,1-«>0,

|Q+11+11-a|

二(-々-1)+(1-a)

=~a-1+1-a

=-2a,

故答案为;-2a.

【点睛】本题考杳了绝对值和相反数的性质,正数的绝对值是它本身,负数的绝对值是它的相反数,。的绝

对值还是0,掌握以上知识是解懑的关键.

【变式3-2](2023春・上海・六年级专题练习)已知非零实数a,b,c,|a|+a=0,\ab\=ab,|c|-c=O,

化简|b|—|a+b|一|c-b\+\a-c\.

【答案】h

【分析】根据“一个正数的绝对值是它本身,一个负数的绝对值它的相反数”化简即可.

【详解】

V|a|+a=0,\ab\=ab1|c|—c=0»

<0,bV0,c>0,

a+b<0,c—b>0,a—c<0,

/.原式=-b+a+b—c+b—a+c=b.

【点睛】本题考查了化简绝对值,整式的加减计算,熟练掌握所学知识是解题关键.

【变式3-3](2023春•河南新乡,七年级校考期中)己知,同=・。,霍=一1,|c|=c,化简

-d=•

【答案】-2c

【分析】根据已知的等式判断出4、A、C的正负,进而确定出"仄4-C、人-C的正负,再利用绝对值的代

数意义化简,即可求解.

【详解】解:=-a,y=-L\c\=c,

・•・〃为非正数,〃为负数,c为非负数,

•'•a+bVO,a-c<0,b-c<0»

原式=-a-b+a-c+b-c=-2c,

故答案为:-2c.

【点睛】本题考查了根据绝对值的代数意义进行化简等知识点,熟练掌握绝对值的代数意义是解答本题的关

键.

【题型4利用绝对值的定义判断正误】

【例4】(2023春・湖北宜昌•七年级枝江市实验中学校考期中)如果Q+b+c=O,且|c|>|b|>|a|.则下

列说法中可能成立的是()

A.a、b为正数,c为负数B.a、c为正数,力为负数C.b、c为正数,a为负数D.a、

c为正数,b为0

【答案】A

【分析】根据有理数的加法,一对相反数的和为0,可得a、b、c中至少有一个为正数,至少有一个为负数,

又|c|>网>|a|,那么|c|=|b|+|a|,进而得出可能存在的情况.

【详解】解:0**a+b4-c=0,

•••。、b、c中至少有一个为正数,至少有一个为负数,

•••|c|>\b\>\a\,

•••kl=\b\4-|a|,

・•・可能a、b为正数,c为负数;也可能a、b为负数,c为正数.

故选:A.

【点睛】本题主要考查的是有理数的加法,绝对值的意义,掌握有理数的加法法则是解题的关键.

【变式4-1】(2023春泗川甘孜•七年级统考期末)已知有理数小人,。在数轴上的对应点的位置如图所示.

IIII一

b0(7c

给出下列结论:①Q+b+(―c)>0:②(―Q)—b+c>0;(3)p-+3a=1;④be-a>0:⑤|a-b\—

|a|c|

\c+b\+\a+c\=-2b.其中,正确的是.(填序号)

【答案】②③

【分析】根据有理数。、从c在数轴上的对应点的位置和绝对值的意义逐一进行判断即可.

【详解】解:由数轴可知,Z?<0<a<c,\a\<\b\<\c\,

**•a+(-c)<0,(-a)—b>0,

+b+(—c)<0,(—a)—b+c>0

故①不正确,②正确,

%=1,^=T后=1,

端+*百=1+(T)+1=K

故③正确,

*.*fc<0<a<c

:•匕c<0,

/.tc—a<0»

故④不正确,

*/1<0<a<c,|a|<\b\<|c|,

.\\a-b\-\c+b\+\a+c\=a-b-c-b+a+c=2a-2bf

故⑤不正确,

故答案为:②③.

【点睛】本题考查了数轴、绝对值,解决本题的关健是掌握绝对值的意义.

【变式4-2](2023春.湖北省直辖县级单位.七年级校考阶段练习)已如〃、〃为有理数,卜.列说法:

①若4、〃互为相反数,则£=1;

D

②若a+b<0,ab>0,则|3〃+4〃|=-3a-4b;

③若一例+a・b=0,则b>a;

④若同>|加,则(a+b)•(a-b)是负数.

其中错误的是—(填写序号).

[答案]®®®

【分析】根据不等式的性质进行判断即可;

【详解】解:若4=/?=0,则生殳有意义,故①符合题意;

b

Ta+bVO,ab>0,

Ad<0,bVO,

・・・3ai4)V0,

.*.\3a+4h\=-3a-4b,故②不符合题意;

V\a-b\+a-b=0,

/.\a-b\=b-a,

・•・(£〃,故③符合题意;

若〃=-2,b=\,

(a+b)•(«-/?)=(-i)x(-3)=3>0,故④符合题意;

故答案为:①③④.

【点睛】本题主要考查有理数加法、乘法和除法法则,以及绝对值法则,掌握这些法则是解题的关键.

【变式4-3](2023春・湖北咸宁•七年级校联考期中)已知为有理数,且Q<0,Qb<0,Q+b<0,则

下列结论:①b(Q+6)>0;②|a|>|b|;®a<-b<h<-a;®|a-b\-\a+b\-2\b\=0.其中正

确结论的序号是—.(把正确结论的序号都填.卜.)

【答案]@@@

【分析】根据aV0,abV0,a+b<0得b>0,—a>0,从而得6(a+b)<0,|a|>\b\,—b<0,a—b<

0,进而判断各项结论.

【详解】解::a<0,abvO,a+b<0,

:.b>0,-a>0,

••hCa+b)<0,|a|>\b\,-b<0,a-bvO,故①错误,②正确,

/.a<—b<b<—a,\a-b\—\a+b\-2\b\=b-a+a+b-2/?=0,故③④正确,

故答案为:②③④.

【点睛】本题主要考查了绝对值、有理数的乘法、有理数的比较大小,综合有理数的绝对值、有理数的乘法

是解题的关键.

【题型5利用绝对值的意义求字母取值范围】

【例5】(2023春•七年级单元测试)当〃取什么范围时,关于工的方程以-4|+2卜-2|+卜-1|+团=〃总有解?

()

A.a>4.5B.a>5C.a>5.5D.a>()

【答案】B

【分析】令y=|x-4|+2|x-2|+|x-l|+|x|,根据x的范围分情况去掉绝对值符号,可求得yN5,再结合题意即可确定

a的范围.

【详解】令y=|x-4|+2k-2|+lx-l|+|x|,

当.心4时,y=5x-9>ll,

当2Vx<4时,y=3x-1,

当I人2时,),=-x+7,

A5<><6;

当0<xVI时,y=-3x+9,

.,.6<y<9;

当烂()时,y=-5A+9,

••・.心9:

综上所述,龙5,

・••生5时等式恒有解.

故选:B.

【点睛】本题考查绝对值的性质;通过构造函数,将等式问题转叱为函数问题解题是关键

【变式5-1](2023春•四川资阳•七年级校考阶段练习)已知|5x-2|=2-5x,则x的范围是()

A.x>1B.x<lC.x>1D.x<7

2555

【答案】D

【分析】根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是。可得出答案.

【详解】解:•;|5x-2|=2-5x,

:.5x-2<0,

解得:

故选:D.

【点睛】本题考查了绝对值的性质,理解正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝

对值等于0是解决问题的关键.

【变式5-2](2023春・重庆•七年级重庆实验外国语学校校考期末)数〃在数轴上对•应点位置如图,若数〃满

足后间,则b的值不可能是()

।।।।一

-2-101234

A.-1B.2C.1D.0

【答案】B

【分析】根据数轴得到⑷V2,根据题意解答即可

【详解】由数轴可知,Ml<2

Vfc<|a|,

:,b<2,

二b可以是—1,1,0不可能是2,

故选:B.

【点睛】本题考查了数轴的概念、绝对值的性质,根据数轴确定|a|的范围是解题的关键.

【变式5-3](2023春.山东济南•七年级校联考期中)若|x・2+3・2x|=|x-2|+|3-2x|成立,则x的范围是

【答案】,工工42

【分析】根据绝对值的性质可得{(二或{;[(官),解天等式组即可求解.

【详解】V|x-2+3-2x|=|x-2|+|3-2x|,

•f%—2<0成(X—2>0

eel3-2x<0I,Zt3-2x>0,

解得曰<x<2.

故x的范围是;<x<2.

故答案为群x<2.

【点睛】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是

正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a

的绝对值是零.

【题型6利用绝对值的意义分类讨论总问题】

【例6】(2023春.全国•七年级专题练习)己知”,力,。为有理数,且a+b+c=0,abcV0,则言+卷+白的

⑷闻|c|

值为()

A.1B.-1或一3C.1或一3D.-1或3

【答案】A

【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a,b,。中应有奇数个负数,进而可将

b,c的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为。,a,b,c的符号只能为

1负2正,然后化简即得.

(详解】,:abc<0

・・・a,b,c中应有奇数个负数

・・・a,b,c的符号可以为:1负2正或3负

:a+b+c=0

••ch〃,c的符号为1负2正

令a<0,b>0,c>0

|a|=—a,\b\=|c|=c

・三+小A=T+I+I=I

故选:A.

【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关

键.

【变式6-1](2023・浙江•模拟预测)有理数小〃,。均不为0.且a+b+c=0,设x=兽+电+」工,则

b+cc+aa+b

代数式-21x+2010的值是()

A.2010B.1990C.2030或1990D.2010或1990

【答案】C

【分析】根据题意可得a,b,4?中不能全同号,必有一正两负或两正一负,a=-(力+e),h=-(.c+a),<?=-(a+h),

则可得普,电,与的值为两个+1,一个-1或两个-1,一个+1,即可求得x的值,代入即可求得答案.

b+cc+aa+b

【详解】解:由。,b,c均不为0,知。+c,c+a,a+Z?均不为0,

Va+b+c=0,

/.a=-(b+c),b=-(c+a),c=-(a+b),

又a,乩c,中不能全同号,故必一正二负或一负二正,

・•・粤,里,粤中必有两个同号,另一个符号相反,

b+cc+aa+b

即其值为两个+1,一个-1或两个-1,一个+1,

+电+4二±1,

b+cc+aa+b

:.x21-21x+2010=121-21+2010=1990,

或-21x4-2010=(-1)21-21x(-1)+2010=2030,

故选c.

【点睛】本题考查了代数式求值,注意分类讨论思想的应用.能得到兽,电,粤的值为两个+1,一个-1或

b+cc+aa+b

两个-1,一个+1是解此题的关键,要注意仔细分析,难度适中.

【变式6-2](2023春•浙江•七年级专题练习)已知有理数a、b、c、d满足陪^=-1,求言+白+卷+3的

\abcd\|a|网|c||d|

值.

【答案】2或一2

【分析】根据%=-1,得到小b,C,d中负数个数为1个或3个,然后分情况求解即可.

\abcd\

【详解】解:根据端二一1,得到小b,c,4中负数个数为I个或3个,

\abcd\

则原式=-14-1+1+1=2或-1-1-1+1=-2.

【点睛】本题考查了绝对值的意义以及有理数的混合运算,熟练掌握绝对值的意义结合分类讨论的思想解题

是关键.

【变式6・3](2023春•四川内江•七年级四川省内江市第六中学校考期中)已知勺,不,的,…“202】都是不

等于0的有理数,若%=电,求力的值.

xi

解:当%]>0时,y=—=—=1,当必<0时,y,=—=—=-1,所以=±1

1xixixixi

(1)若、2=凶+国,则丫2的值为______;

X】x2

(2)若乃=闻+四+四,则%的值为______;

X】x2x3

(3)由以上探究猜想,y2i=—+—+—+-+共有个不同的值.

20X1x2x3x202l

(4)应用:如果a、b、c是非零实数,且a+b+c=0,邢台+9的所有可能的值为______?

同\b\|c|label

[答案]⑴±2或0

⑵±1或±3

(3)2022

(4)0

【分析】(I)由题意可得凶=±1,四=±1,再求解即可;

X1x2

(2)由题意可得应=±L国=±1,国=±1,再求解即可;

XiX2x3

(3)通过计算发现规律:力021有2022个值,最大值2021,最小值为-2021,再求解即可;

(4)根据正负性去绝对值计算即可,注意分类讨论.

【详解】(1)解:同=±1,幽=±1,

X\X2

...),2=回+四=±2或0,

故答案为:±2或0;

(2)解:凶=±1,囱=±1,凶=±1,

MX2x3

),3=师+国+同=±1或±3,

X1X2x3

故答案为:±1或±3;

(3)解:由(1)(2)可知,yi有2个值,丫2有3个值,内有4个值,

•••。2021有2022个值,最大值2021,最小值为一2021,

故答案为:2022.

(4)解:•・力、。、c是非零实数,且Q+匕+c=0,

••・〃、仇c是两个正数一个负数或一个正数两个负数,

当“、b、c•是两个正数一个负数时,abcvO,此时含+白+白+陪=1+1TT=。;

|a|\b\|c||abc|

当。、b、。是一个正数两个负数时,Qbc>0,此时白+白+白+陪=1-1-1+1=0;

|a|出1|c|label

.・.:+&+£+匹=0,

lai网kllabel

故答案为:0.

【点睛】本题考查数字的变化规律、绝对值化简,通过计算,从特殊到一般进行归纳,探索出结果的规律是

解题的关键.

【题型7分类讨论多绝对值问题】

【例7】(2023春・广西南宁•七年级校考期中)在数轴上有四个互不相等的有理数4、b、c",若|aT|+|b-c|=

c-a,设d在a、c之间,则|a-d|+\d-c\+\c-b\+\a-c\=.

【答案】-2a-b+3c

【分析】由|a-+|b-c|=c-a=aVbVc,又d在a、。之间,故有aVdVbVc或aVbVdVc两

种情况,分别讨论可得答案.

【详解】解:\a-b\+\b-c\=c-a.

••a<b<c,

在4、C之间,

•••a<d<b<c或aVbVdVc,

当a<d<b<c时,|a-d|+|d-c|+|c—b|+|a—c|=d—a+c—d+c—b+c—a=—2a—b+3c,

当a<b<d<c时,|a-d|+|d-c|+|c-b|+|a-c|=d-a+c-d+c-b+c-a=-2a-b+3c,

故答案为:—2Q—b+3C

【点睛】本题考查去绝对值,解题的关键是分类讨论思想的应用.

【变式7-11(2023春•湖北武汉•七仝级校考阶段练习)已知a,b,c,d都是整数,且|a+b|+|b+c|+|c+山+

|d+Q|=2,则|Q+b|=.

【答案】1或0.

【分析】根据题意易知|a+b|、|b+c|、|c根|、|d+a|是整数,所以不外乎两种可能:①3个为0,1人为2;②2

个为0,2个为1,继而讨论|a+d|的值.

【详解】由题意得:|a+b|、|b+ch|汁d|、|d+a|是整数,所以有两种可能:

①3个为0,1个为2,

②2个为0,2个为1,

所以|a+d|只可能取0、1、2,若为2,

则|a+b|=|b+c|=|c+d|=0,

不难得出a=-d,所以|a+d|=0,与假设|a+d|=2矛盾.

所以|a+d|只可能取0、1,a=0,b=0,c=-l,d=lW|a+d|=l;

a=-l,b=0,c=0,d=lBt|a+d|=0.

故答案为1或0.

【点睛】本题考查了绝对值的知识,难度较大,注意对各种情况的讨论,不要漏解.

【变式7-2](2023春・福建泉州•七年级统考期末)已知x是有理数,且x有无数个值可以使得弋数式

|2021x+20212|+|x+2021|+|2022x+20222|的值是同一个常数,则此常数为.

【答案】2022

【分析】由题意确定出x的取值范围,然后按照这个取值范围化简原式即可求出此常数.

【详解】由题意,得将|2021计20212|+忱+2021|+12022%+20222|进行化简后代数式中不含羽才能满足

题意.

因此,当一2022&%&-2021时,

原式二-202产-2021x-X-2021+2022x+2022

=(-2021X-x+2022%)-20212-2021+20222

=2022.

故答案为:2022.

【点睛】本题考查了绝对值的性质、有理数的加减,解题的关键是确定x的取值范围.

【变式7-3](2023春・四川成都•七年级成都实外校考期中)已知m、n为有理数,方程||%+m|-n|=2.7仅

有三个不相等的解,贝加二.

【答案】2.7

【分析】含有绝对值的方程,先去掉外边绝对值得|x+=2.7+几或氏+=-2.7+n,由于仅有3个不

相等的解,则一2.7+九=0,解方程求得〃的值.

【详解】解:||x+m|-n|=2.7,

/.|x4-m|=2.7+ri或+m|=-2.7+n,

当W+m\=2.7+nH寸,x=2.7+n-7n或;v=—2.7—n—m,

当W+m|=-2.7+n时,x=-2.7+n-m或%=2.7-n-m,

•••方程|+m|-n|=2.7仅有三个不相等的解,

:.-2.7+n=0时,n=2.7或2.74-n=0时,n=-2.7,

当九=一2.7时,K+m|=-5.4,不成立,

:.n=2.7,

综上所述:名的值为2.7,

故答案为:2.7.

【点睛】本题考查绝对值方程,分类讨论是解题的关键.

【题型8绝对值中最值问题】

【例8】(2023春・江苏•七年级期末)如图,数轴上有点a,b,c三点.

—~~o---------L)F>

(I)用“V”将4,rC连接起来.

(2)b~a0(填W,“=”);

(3)化简匕一目一匕一。|+|。一1|;

(4)用含小〃的式子表示下列的最小值.

①氐一。|+仅一臼的最小值为;

②以一a|+\x—〃|+\x-c|的最小值为.

【答案】(1)cVaVb,(2)>,(3)b-\;(4)®b-a,@h-c.

【分析】(1)比较有理数的大小可以利用数轴,它们从左到右的顺序,即从小到大的顺序(在数轴上表示

的两个有理数,右边的数总比左边的数大);

(2)先求出。的范围,再比较大小即可求解:

(3)先计算绝对值,再合并同类项即可求解;

(4)根据绝对值的性质以及题意因可求出答案.

【详解】解:(1)根据数轴上的点得:。<4<力;

(2)由题意得:b-6?>0;

(3)\c-h\-\c-a\+\a-1|

=b-c-(«-c)+a-1

=b-c-a+c+a-1

=6-1;

(4)由图形可知:①当x在a和力之间时,|x-a|+|x-。|有最小值,

/.\x-a|+|x-力|的最小值为:x-a+b-x=b-a;

②当x=a时,\x-a\+\x-/?|+|A--(i=0+/?-a+a-c=b-c,为最小值.

故答案为:①力“;②….

【点睛】考查了数轴,通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小

有直观、简捷,举重若轻的优势.

【变式8-1](2023春•广东汕头•七年级校考阶段练习)(1)在数轴上,点A表示数-3,点。表示原点,点力、0

之间的距离=_.

(2)在数轴上,点4B分别表示数a、b,点A、B之间的距离=\a-b\,数轴上分别表示a和-2的两点4和B之

间的距离为3,那么Q=_

(3)计算:卜一4+卜_耳+1_m+-+1^------1=

\321143l154l1202020191一

(4)|3-a|+|a-2|的最小值是

【答案】(1)3;(2)1或一5;(3)-(4)1

2020

【分析】(1)数轴上两点的距离:右边的数-左边的数,据此即可得到答案;

(2)根据已知中两点的距离公式计算,即可得到答案:

(3)根据绝对值的意义去绝对值符号,再进行计算,即可得到答案;

(4)分三种情况讨论,分别求出最小值,比较即可得到答案.

【详解】解:(1)•・•点A表示数一3,点。表示原点,

点小。之间的距离=0-(-3)=3,

故答案为:3:

(2)•.•数轴上分别表示a和-2的两点4和8之间的距离为3,

二|a—(—2)1—3,

:•a=1或Q=—5,

故答案为:I或一5;

⑶+【尸…+1信一扇

\23/\34/\45/\20192020/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论