二次函数超级经典课件教案_第1页
二次函数超级经典课件教案_第2页
二次函数超级经典课件教案_第3页
二次函数超级经典课件教案_第4页
二次函数超级经典课件教案_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数超级经典课件教案二次函数超级经典课件教案「篇一」知识技能1.能列出实际问题中的二次函数关系式;2.理解二次函数概念;3.能判断所给的函数关系式是否二次函数关系式;4.掌握二次函数解析式的几种常见形式。过程方法从实际问题中感悟变量间的二次函数关系,揭示二次函数概念学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义情感态度使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。教学重点理解二次函数的意义,能列出实际问题中二次函数解析式教学难点能列出实际问题中二次函数解析式教学过程设计教学程序及教学内容师生行为设计意图一、情境引入播放实际生活中的有关抛物线的图片,概括性的介绍本章。二、探究新知㈠、用函数关系式表示下列问题中变量之间的关系:1.正方体的棱长是x,表面积是y,写出y关于x的函数关系式;2.n边形的对角线条数d与边数n有什么关系?3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?㈡观察所列函数关系式,看看有何共同特点?㈢类比一次函数和反比例函数概念揭示二次函数概念:一般地,形如的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。实质上,函数的名称都反映了函数表达式与自变量的关系。三、课堂训练(略)四、小结归纳:学生谈本节课收获1.二次函数概念2.二次函数与一次函数的区别与联系3.二次函数的4种常见形式五、作业设计㈠教材16页1、2㈡补充:1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是xxxxxxxxxxxx。3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是xxxxxxx,若年利率为6%,两年到期的本利共xxxxxx元。4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是xxxx;当a=8时,S=xxxx;当S=24时,a=xxxxxxxx。5、当k=xxxxx时,是二次函数。6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为xxxxxxxxxxxxxxx。7、已知s与成正比例,且t=3时,s=4,则s与t的函数关系式为xxxxxxxxxxxxxxx。8、下列函数不属于二次函数的是A.y=(x-1)(x+2)B.y=(x+1)2C.y=2(x+3)2-2x2D.y=1-x29、若函数是二次函数,那么m的值是A.2B.-1或3C.3D。10、一块草地是长80m、宽60m的矩形,在中间修筑两条互相垂直的宽为xm的小路,这时草坪面积为ym2.求y与x的函数关系式,并写出自变量x的取值范围。二次函数超级经典课件教案「篇二」一、说课内容:苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。2、教学目标和要求:(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。3、教学重点:对二次函数概念的理解。4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。三、教法学法设计:1、从创设情境入手,通过知识再现,孕伏教学过程2、从学生活动出发,通过以旧引新,顺势教学过程3、利用探索、研究手段,通过思维深入,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件?k值对函数性质有什么影响?【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解强调k≠0的条件,以备与二次函数中的a进行比较。(二)引入新课函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)例1、(1)圆的半径是r(cm)时,面积s(cm)与半径之间的关系是什么?解:s=πr(r>0)例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。(三)讲解新课以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。二次函数的定义:形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数叫做二次函数。巩固对二次函数概念的理解:1、强调“形如”,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)3、为什么二次函数定义中要求a≠0?(若a=0,ax2+bx+c就不是关于x的二次多项式了)4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100。5、b和c是否可以为零?由例1可知,b和c均可为零。若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2。注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c。(1)y=3(x-1)+1(2)(3)s=3-2t(4)y=(x+3)-x(5)s=10πr(6)y=2+2x(8)y=x4+2x2+1(可指出y是关于x2的二次函数)【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。(四)巩固练习1.已知一个直角三角形的两条直角边长的和是10cm。(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。(1)分别写出S与x,V与x之间的函数关系式子;(2)这两个函数中,那个是x的二次函数?【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3(1)分别写出C关于r;V关于r的函数关系式;(2)两个函数中,都是二次函数吗?【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。4.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。(五)拓展延伸1.已知二次函数y=ax2+bx+c,当x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a、b、c,并写出函数解析式。【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。2.确定下列函数中k的值(1)如果函数y=xk^2-3k+2+kx+1是二次函数,则k的值一定是______(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0。(六)小结思考:本节课你有哪些收获?还有什么不清楚的地方?【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。(七)作业布置:必做题:1.正方形的边长为4,如果边长增加x,则面积增加y,求y关于x的函数关系式。这个函数是二次函数吗?2.在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。选做题:1.已知函数是二次函数,求m的值。2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。五、教学设计思考以实现教学目标为前提以现代教育理论为依据以现代信息技术为手段贯穿一个原则——以学生为主体的原则突出一个特色——充分鼓励表扬的特色渗透一个意识——应用数学的意识二次函数超级经典课件教案「篇三」§3.2.3

二次函数模型(三)【教学目标】

1)熟练掌握二次函数的图象和性质,二次函数的三种关系式。2)学会根据已知条件求二次函数的关系式,数形结合思想的应用。3)培养学生合作学习、大胆创新,让他们充分的展现才能,同心协力,【教学重点】求二次函数关系式。【教学难点】数形结合思想的应用【教学方法】这节课主要采用启发式教学法和讲练结合法.【板书设计】§3.2.3

二次函数模型(三)

例:

学生板演【教学过程预设】一、情境导入要求学生写出二次函数的一般形式,并写出它图象的顶点坐标。

y=ax2+bx+c(a≠0),顶点坐标为(-,)。要求学生写出二次函数的顶点式,并写出它图象的顶点坐标。

y=a(x+h)2+k(a≠0),顶点坐标为(-h,k)。

二次函数y=x2+2x-3的图象与x轴的交点坐标为(-3,0)和(1,0);二次函数y=(x+3)(x-1)的图象与x轴的交点坐标为(-3,0)和(1,0);[教师指出]:我们把y=a(x-x1)(x-x2)叫做二次函数的交点式。其中,x1,x2是图象与x轴交点的横坐标。

(因此交点式也叫双根式,截距式)顺势揭示课题,板书节名二、例题讲解例1、已知二次函数图象的顶点为(2,3),且经过点(3,1),求这个二次函数的关系式。[分析]:已知二次函数的顶点坐标,能否写出他的顶点式。

y=a(x+h)2+k(a≠0),顶点坐标为(-h,k)这里h=,k=,a=?待定系数法的一般步骤?[教师引导学生完成解题][巡视辅导,点评]解:∵二次函数图象的顶点为(2,3)∴设二次函数的关系式为y=a(x-2)2+3又∵二次函数图象过点(3,1)∴1=a(3-2)2+3解得a=-2∴所求二次函数的关系式为y=-2(x-2)2+3即y=-2x2+8x-5[教师引导学生总结]:当已知条件有顶点,或对称轴,或最值,或单调区间,通常设顶点式y=a(x+h)2+k(a≠0)。[巩固练习]:

已知二次函数的图象是以直线x=-2为对称轴,函数有最小值-3,又经过点(0,1)。求该二次函数函数的表达式。[教师巡视辅导,点评练习]解:由题意可设此函数的表达式为y=a(x+2)2-3

∵二次函数图象过点(0,1)∴1=a(0+2)2-3解得a=1∴所求二次函数的表达式为y=(x+2)2-3即y=x2+4x+1例2已知二次函数f(x)函数值f(2)=0,f(4)=0,f(-1)=30。求这个二次函数的表达式。

[分析]:函数的表达式有哪几种?应该怎么设函数解析式。

[教师讲解三元一次方程组的解法[。解:由已知设f(x)=ax2+bx+c(a≠0),则有

解得:∴所求二次函数的表达式为f(x)=2x2-12x+16[教师引导学生总结]:

当已知条件有图像上三点,通常设一般式y=ax2+bx+c(a≠0)。[思考]:还有没有其他的解法?J二次函数f(x)函数值f(2)=0,你能发现什么吗?

&二次函数f(x)与x轴的交点为(2,0),(4,0)。

可设其表达式为f(x)=a(x-2)(x-4)

解:∵f(2)=0,f(4)=0

∴f(x)与x轴的交点为(2,0),(4,0)

∴设f(x)=a(x-2)(x-4)

又∵f(-1)=30

∴设30=a(-1-2)(-1-4)

解得a=2∴所求二次函数的表达式为f(x)=2(x-2)(x-4)即f(x)=2x2-12x+16[教师引导学生总结]:

当已知条件有与x轴的交点的坐标,通常设双根式y=a(x-x1)(x-x2)

[巩固练习]已知二次函数y=ax2+bx+c的最大值是7,且y≥0的解集是{x|-1≤x≤3},求函数的解析式。[学生展开讨论][教师总结]三、课堂小结当已知条件有顶点,或对称轴,或最值,或单调区间,通常设顶点式y=a(x+h)2+k(a≠0)。当已知条件有图像上三点,通常设一般式y=ax2+bx+c(a≠0)。当已知条件有与x轴的交点的坐标,通常设双根式y=a(x-x1)(x-x2)。对称轴是x=三元一次方程组的解法。四、作业课课练,P37-38五、教学反思二次函数超级经典课件教案「篇四」教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。3、通过学生共同观察和讨论,培养大家的合作交流意识。(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。2、具有初步的创新精神和实践能力。教学重点1、体会方程与函数之间的联系。2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。教学难点1、探索方程与函数之间的联系的过程。2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。教学方法讨论探索法。教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。二次函数超级经典课件教案「篇五」教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学难点:求出函数的自变量的取值范围。教学过程:一、问题引新1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中。AB长x(m)123456789BC长(m)12面积y(m2)482.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?y=x(20-2x)二、提出问题,解决问题1、引导学生看书第二页问题一、二2、观察概括y=6x2d=n/2(n-3)y=20(1-x)2以上函数关系式有什么共同特点?(都是含有二次项)3、二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项。4、课堂练习(1)(口答)下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1(3)y=2x3-3x2(4)y=5x4-3x+1(2).P3练习第1,2题。五、小结叙述二次函数的定义。六、作业:课本第14页习题1.2七、板书第二课时:26.1二次函数(2)教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象教学难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质。教学过程:一、问题引新1、同学们可以回想一下,一次函数的性质是什么?2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?3.一次函数的图象是什么?二次函数的图象是什么?二、学习新知1、例1、画二次函数y=2x2与y=2x2的图象。(有学生自己完成)解:(1)列表:在x的取值范围内列出函数对应值表:(2)描点(3)连线x…-3-2-10123。y…9410149。找一名学生板演画图提问:观察这个函数的图象,它有什么特点?(让学生观察,思考、讨论、交流,)2、归纳:抛物线概念:像这样的曲线通常叫做抛物线。抛物线与它的对称轴的交点叫做抛物线的顶点顶点坐标(0,0)3、运用新知(1).观察并比较两个图象,你发现有什么共同点?又有什么区别?(2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较(3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示)让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2(a>0)取得最小值,最小值y=______三、总结:函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。四、课堂练习:练习册P练习1、2、3、4。五、作业:1.画出函数y=1/2x2的图象?2.写出函数y=ax2具有哪些性质?第三课时:二次函数(3)教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出(1)y=-2x2与y=-2x2-2;的图像五:板书第四课时26.1二次函数(4)教学目标:1.使学生能利用描点法画出二次函数y=a(x―h)2的图象。2.让学生经历二次函数y=a(x-h)2性质探究的过程,理解其性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。重点:会用画出二次函数y=a(x-h)2的图象,理解其性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系。教学过程:一、提出问题导入新课1.在同一直角坐标系内,画出二次函数y=-12x2,y=-12x2-1的图象,并回答:(1)两条抛物线的位置关系。(2)说出它们所具有的公共性质。2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、学习新知1、探究新知:学生画出二次函数y=2(x-1)2和y=2x2的图象,并加以观察教师巡视、指导。分组讨论,交流合作2、学生汇报:函数y=2(x-1)2与y=2x2的图象,开口方向、对称轴和顶点坐标;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象怎样平移得到的。师:由函数y=2x2的性质总结函数y=2(x-1)2的性质3.让学生完成以下填空:当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。4、做一做在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?让学生讨论、交流,举手发言,归纳:在y=2(x+1)2中,当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。4、课堂练习:P11练习1、2、3。三、小结:谈谈本节课的收获和体会。四、作业1.P19习题26.21(2)。五、板书第五课时26.1二次函数(5)教学目标:1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。3.让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。重点,理解函数y=a(x-h)2+k的性质以及图象与y=ax2的图象之间的关系。难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质一、提出问题导入新课1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?这就是本节要学习得内容。二、学习新知1、画图:在同一直角坐标系中画出函数y=2(x-1)2与y=2x2y=2(x-1)2+1的图象,看看它们之间有何的关系?在学生画函数图象时,教师巡视指导;出示例3:你能发现函数y=2(x-1)2+1有哪些性质?教师可组织学生分组讨论,互相交流,让各组代表发言。函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。2:出示4(P10)3、课堂练习:不画图像说说函数y=2(x-1)2-2与y=2(x-1)2的异同点三、小结1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?2.谈谈你的学习体会。四、作业:1.巳知函数y=-12x2、y=-12x2-1和y=-12(x+1)2-1(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线y=-12x2得到抛物线y=-12x2-1和抛物线y=12(x+1)2-1;思考:函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?五、板书:第六课时26.1二次函数(6)教学目标:1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标。难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是教学的难点。教学过程:一、提出问题导入新课1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?具有哪些性质?2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?3.不画出图象,你能直接说出函数y=-1/2x2-6x+21的图象的开口方向、对称轴和顶点坐标吗?通过今天的学习你就明白了二、学习新知1、思考:像函数y=-4(x-2)2+1很容易说出图像的顶点坐标,函数y=-1/2x2-6x+21能画成y=a(x-h)2+k这样的形式吗?2、师生合作探索:y=-1/2x2-6x+21变成y=a(x-h)2+k的过程3、做一做(1).通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?在学生做题时,教师巡视、指导;让学生总结配方的方法;思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?教师组织学生分组讨论,各组选派代表发言,全班交流,汇报结果:y=ax2+bx+c(配方变形的过程略)当a>0时,开口向上,当a<0时,开口向下。对称轴是x=-b/2a,顶点坐标是(-b2a,4ac-b24a)(2)、P12练习第1、2、3、4题4、待定系数法求二次函数解析式(引导学生自学看书12页)5、练一练P13练习第1、2三、小结:通过本节课的学习,你学到了什么知识?有何体会?四、作业:1.填空:(1)抛物线y=x2-2x+2的顶点坐标是_______;(2)抛物线y=2x2-2x-52的开口_______,对称轴是_______;(3)二次函数y=ax2+4x+a的最大值是3,则a=_______。2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。3.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y=3x2+2x;(2)y=-x2-2x(3)y=-2x2+8x-8(4)y=12x2-4x+34.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质五:板书第七课时26.2用函数的观点看一元二次方程(1)教学目标:1.通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。2.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。3.进一步培养学生综合解题能力,渗透数形结合思想。重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题。难点:进一步培养学生综合解题能力,渗透数形结合的思想。教学过程:一、引导学生看书16页导入新课像书中这样的问题,我们常常会遇到,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,我和同学们共同研究,尝试解决以下几个问题。二、探索问题,学习新知1、问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+45。(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?思路如下:(1).让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y=-x2+2x+45最大值,问题(2)就是求如图(2)B点的横坐标;(2)学生解答,教师巡视指导;一两位同学板演,教师点评。2、出示例题:画出函数y=x2-x-34的图象。如图(4)所示。教师引导学生观察函数图象,得到图象与x轴交点的坐标分别是(-12,0)和(32,0)。让学生完成解答。教师巡视指导并讲评。教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解。更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。3、应用新知根据图(4)象回答下列问题。(1)当x取何值时,y<0?当x取何值时y>0?(当-12<x<32时;当x<-12或x>32时,y>0)y<0即x2-x-34<0的解集是什么?y>0即x2-x-34>0的解集是什么?)想一想:二次函数与一元二次不等式有什么关系?让学生类比二次函数与一元二次不等式方程的关系,讨论、交流:(1)从“形”的方面看,二次函数y=ax2+bJ+c在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标即为一元二次不等式ax2+bx+c<0的解。(2)从“数”的方面看,当二次函数y=ax2+bx+c的函数值大于0时,相应的自变量的值即为一元二次不等式ax2+bx+c>0的解;当二次函数y=ax2+bx+c的函数值小于0时,相应的自变量的值即为一元二次不等式ax2+bc+c<0的解。这一结论反映了二次函数与一元二次不等式的关系。三、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况。四、作业:1.二次函数y=x2-3x-18的图象与x轴有两交点,求两交点间的距离。2.已知函数y=x2-x-2。(1)先确定其图象的开口方向、对称轴和顶点坐标,再画出图象(2)观察图象确定:x取什么值时,①y=0,②y>0;③y<0。五、板书:第八课时:26.2用函数的观点看一元二次方程(2)教学目标:1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解。2.让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解。3.提高学生综合解题能力,渗透数形结合思想。重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。教学过程:一、复习巩固导入新课1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解。学生练习的同时,教师巡视指导,根据学生情况进行讲评。(解:略)二、探索问题学习新知1、问题1:初三(3)班学生在上节课的作业中出现了争论:求方程x2=12x十3的解时,几乎所有学生都是将方程化为x2-12x-3=0,画出函数y=x2-12x-3的图象,观察它与x轴的交点,得出方程的解。唯独小刘没有将方程移项,而是分别画出了函数y=x2和y=12x+2的图象,如图(3)所示,认为它们的交点A、B的横坐标-32和2就是原方程的解。思考:(1).这两种解法的结果一样吗?小刘解法的理由是什么?(让学生讨论,交流,发表不同意见,并进行归纳。)(2).函数y=x2和y=bx+c的图象一定相交于两点吗?你能否举出例子加以说明?(3)函数y=x2和y=bx+c的图象的交点横坐标一定是一元二次方程x2=bx+c的解吗?(4).如果函数y=x2和y=bx+c图象没有交点,一元二次方程x2=bx+c的解怎样?2、做一做(验证一下问题1的思路是否正确)利用图像解下列方程的解,并检验小刘的方法是否合理。(1)x2+x-1=0(精确到0.1);(2)2x2-3x-2=0。注意:①要把(1)的方程转化为x2=-x+1,画函数y=x2和y=-x+1的图象;②要把(2)的方程转化为x2=32x+1,画函数y=x2和y=32x+1的图象;3、运用新知已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m)。(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标。解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m=1所以y1=x+1,P(3,4)。因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k+8解得k=2所以y1=2x2-8x+10(2)依题意,得y=x+1y=2x2-8x+10解这个方程组,得x1=3y1=4,x2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5)。三、小结:1.如何用画函数图象的方法求方程韵解?2.你能根据方程组:y=x2y=bx+c的解的情况,来判定函数y=x2与y=bx+c图象交点个数吗?请说说你的看法。四、作业:1.利用函数的图象求下列方程的解:(1)x2+x-6=0,(2)y=x2+xy=5x-42.填空。(1)抛物线y=x2-x-2与x轴的交点坐标是______,与y轴的交点坐标是______。(2)抛物线y=2x2-5x+3与y轴的交点坐标是______,与x轴的交点坐标是______。4.已知抛物线y1=x2+x-k与直线y=-2x+1的交点的纵坐标为3。(1)求抛物线的关系式;(2)求抛物线y=x2+x-k与直线y=-2x+1的另一个交点坐标。五、板书:第九课时26.1实际问题与二次函数教学目标:1.能根据实际问题列出函数关系式。2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。重点:根据实际问题建立二次函数的数学模型,应用函数的性质解答数学问题难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围。教学过程:一、复习旧知导入新课1.写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y=6x2+12x;(2)y=-4x2+8x-10以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?有了前面所学的知识,现在就可以应用二次函数的知识去解决生活中的实际问题。二、学习新知1、应用二次函数的性质解决生活中的实际问题出示例1、要用总长为60m的篱笆围成一个矩形的场地,矩形面积S随矩形一边长L的变化而变化,当L是多少时,围成的矩形面积S最大?解:设矩形的一边为Lm,则矩形的另一边为(30-L)m,由于L>0,且30-L>O,所以O<l<30。<p="">围成的矩形面积S与L的函数关系式是S=L(30-L)即S=-L2+30L(有学生自己完成,老师点评)2、引导学生自学P23页例2质疑点评3、练一练:(1)、某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大?请同学们完成解答;教师巡视、指导;师生共同完成解答过程:解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。商品每天的利润y与x的函数关系式是:y=(10-x-8)(100+1OOx)即y=-1OOx2+1OOx+200配方得y=-100(x-12)2+225因为x=12时,满足0≤x≤2。所以当x=12时,函数取得最大值,最大值y=225。所以将这种商品的售价降低0.5元时,能使销售利润最大。小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否在自变量的取值范围内,并求相关的值:(5)解决提出的实际问题。4、综合练习:P26习题第1、2、3题。三、小结:1.通过本节课的学习,你学到了什么知识?存在哪些困惑?2.谈谈你的收获和体会。四、作业:1.已知一个矩形的周长是24cm。(1)写出矩形面积S与一边长a的函数关系式。(2)当a长多少时,S最大?2.填空:(1)二次函数y=x2+2x-5取最小值时,自变量x的值是______;(2)已知二次函数y=x2-6x+m的最小值为1,那么m的值是______。3.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm。(1)要使鸡场的面积最大,鸡场的长应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?(3)比较(1)、(2)的结果,你能得到什么结论?选做题:用6m长的铝合金型材做一个形状如图所示的矩形窗框。应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?五、板书第十课时26.1实际问题与二次函数教学目标:1.能根据实际问题列出函数关系式。2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。重点:根据实际问题建立二次函数不同的数学模型,应用函数的性质解答数学问题难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围。教学过程:一、复习旧知导入新课(1)建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA。O恰好在水面中心,布置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+52x+32,请回答下列问题:(1)花形柱子OA的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?(2).如图(7),一位篮球运动员跳起投篮,球沿抛物线y=-15x2+3.5二、学习新知1、引导学生自学P24页例2(既探究2)质疑点评出示例3P25引导学生应用不同的方法去构建数学模型重点讲解例32、练一练:(1).如图是抛物线拱桥,已知水位在AB位置时,水面宽46米,水位上升3米就达到警戒线CD,这时水面宽43米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?三、小结:1.通过本节课的学习,你学到了什么知识?存在哪些困惑?2.谈谈你的收获和体会。四、作业:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?五、板书第十一课时《二次函数》小结与复习1教学目标:1、理解二次函数的概念,掌握二次函数y=ax2的图象与性质;2、会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向;3、能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象。重点:用配方法求二次函数的顶点、对称轴,由图象概括二次函数y=ax2图象的性质。难点:二次函数图象的平移。教学过程:一、结合例题,强化练习,梳理知识点1.二次函数的概念,二次函数y=ax2(a≠0)的图象性质。例1:已知函数是关于x的二次函数。求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。2.强化练习;已知函数是二次函数,其图象开口方向向下,则m=_____,顶点为_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。3.用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律。例2:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y=-3x2。学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规律。充分讨论后让学生代表归纳解题方法与思路。4.教师归纳点评:(1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系:y=ax2+bx+c――――→y=a(x+b2a)2+4ac-b24a(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。(3)抛物线的平移抓住关键点顶点的移动。5.综合应用。例3:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1)。(1)求直线和抛物线的解析式;(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。6.强化练习:(1)抛物线y=x2+bx+c的图象向左平移2个单位。再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。(2)通过配方,求抛物线y=12x2-4x+5的开口方向、对称轴及顶点坐标再画出图象。(3)函数y=ax2(a≠0)与直线y=2x-3交于点A(1,b),求:a和b的值抛物线y=ax2的顶点和对称轴;x取何值时,二次函数y=ax2中的y随x的增大而增大。求抛物线与直线y=-2两交点及抛物线的顶点所构成的三角形面积。二、课堂小结1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。三、作业:填空。1.若二次函数y=(m+1)x2+m2-2m-3的图象经过原点,则m=______。2.函数y=3x2与直线y=kx+3的交点为(2,b),则k=______,b=______。3.抛物线y=-13(x-1)2+2可以由抛物线y=-13x2向______方向平移______个单位,再向______方向平移______个单位得到。4.用配方法把y=-12x2+x-52化为y=a(x-h)2+k的形式为y=_____,其开口方向______,对称轴为______,顶点坐标为______。第十二课时《二次函数》小结与复习2教学目标:1、会用待定系数法求二次函数的解析式。2、能结合二次函数的图象掌握二次函数的性质。3、能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。难点:会运用二次函数知识解决有关综合问题。教学过程:一、结合例题,强化练习,梳理知识点1、用待定系数法确定二次函数解析式。例1:根据下列条件,求出二次函数的解析式。(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。(2)抛物线顶点P(-1,-8),且过点A(0,-6)。(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。学生活动:学生讨论,四个小题应选择什么样的函数解析式?并让学生阐述解题方法。分组完成,点评解题要点。教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)2、强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。二、综合练习1、出示例2:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。(1)求抛物线的解析式;(2)求抛物线的顶点坐标。(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。学生活动:学生小组讨论交流。教师归纳:2、强化练习;已知二次函数y=2x2-(m+1)x+m-1。(1)求证不论m为何值,函数图象与x轴总有交点,并指出m为何值时,只有一个交点。(2)当m为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。(3)若函数图象的顶点在第四象限,求m的取值范围。三、课堂小结同位同学相互说说二次函数有哪些性质归纳二次函数三种解析式的实际应用。四、作业:一、填空。1.如果一条抛物线的形状与y=-13x2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是_____。2.已知抛物线y=ax2+bx+c的对称轴为x=2,且过(3,0),则a+b+c=______。二、选择。1.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是A.a>0,bc>0B.a<0,bc<0C.a>O,bc<oa<0,bc=""d.="">02.已知二次函数y=ax2+bx+c图象如图(2)所示,那么函数解析式为A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y=-x2-2x-33.若二次函数y=ax2+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为A.a+cB.a-cC.-cD.c4.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中:①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是A.4个B.3个C.2个D.1个三、解答题。已知抛物线y=x2-(2m-1)x+m2-m-2。(1)证明抛物线与x轴有两个不相同的交点。(2)分别求出抛物线与x轴交点A、B的横坐标xA、xB,以及与y轴的交点的纵坐标yc(用含m的代数式表示)(3)设△ABC的面积为6,且A、B两点在y轴的同侧,求抛物线的解析式。二次函数超级经典课件教案「篇六」二次函数的教学设计教学内容:人教版九年义务教育初中第三册第108页教学目标

:1.

1.

理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2.

2.

通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3.

3.

通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。教学重点:二次函数的意义;会画二次函数图象。教学难点

:描点法画二次函数y=ax2的图象,数与形相互联系。教学过程

设计:一.

一.

创设情景、建模引入我们已学习了正比例函数及一次函数,现在来看看下面几个例子:1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式答:S=πR2.

①2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系答:S=L(30-L)=30L-L2

②分析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论