第十七章 章末复习_第1页
第十七章 章末复习_第2页
第十七章 章末复习_第3页
第十七章 章末复习_第4页
第十七章 章末复习_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末复习第十七章勾股定理目录考点精讲课堂小结当堂练习要点梳理要点梳理教学目标教学重点1.如果直角三角形两直角边分别为a,b,斜边

为c,那么a2

+b2=c2即直角三角形两直角边的平方和等于斜边的平方.在直角三角形中才可以运用2.勾股定理的应用条件1.勾股定理3.勾股定理表达式的常见变形:

a2=c2-b2,

b2=c2-a2,ABCcab要点梳理2.勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2

,那么这个三角形是直角三角形.2.原命题与逆命题如果两个命题的题设、结论正好相反,那么把其中一个叫做原命题,另一个叫做它的逆命题.ABCcab满足a2+b2=c2的三个正整数,称为勾股数.3.勾股数考点精讲典例精讲归纳总结例1

在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15.(1)求AB的长;(2)求BD的长.解:(1)∵在Rt△ABC中,∠ACB=90°,(2)方法一:∵S△ABC=AC•BC=AB•CD,∴20×15=25CD,

∴CD=12.∴在Rt△BCD中,考点1勾股定理及其应用考点精讲方法二:设BD=x,则AD=25-x.解得x=9.∴BD=9.方法总结对于本题类似的模型,若已知两直角边求斜边上的高常需结合面积的两种表示方法来考查,若是同本题(2)中两直角三角形共一边的情况,还可利用勾股定理列方程求解.1.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算A3.一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为___________.2.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长为______.13或513针对训练4.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,求△ABC的面积.解:∵a+b=14,∴(a+b)2=196.又∵a2+b2=c2=100,∴2ab=196-(a2+b2)=96,∴ab=24,即△ABC的面积为24.例2

我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?

如图,设水池的水深AC为x尺,

则这根芦苇长AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺,由勾股定理得BC2+AC2=AB2,即52+x2=(x+1)225+x2=x2+2x+1,2x=24,∴x=12,x+1=13.答:水池的水深12尺,这根芦苇长13尺.DBCA解:例3

如图所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处,问怎样走路线最短?最短路线长为多少?解析:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式:①沿ABB1A1和A1

B1C1D1面;②沿ABB1A1和BCC1B1面;③沿AA1D1D和A1B1C1D1面,把三种方式分别展成平面图形,如下:解:

在Rt△ABC1中,

在Rt△ACC1中,

在Rt△AB1C1中,∴沿路径走路径最短,最短路径长为5.化折为直:长方体中求两点之间的最短距离,展开方法有多种,一般沿最长棱展开,距离最短.方法总结5.现有一长5米的梯子架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是______米.4针对训练在Rt△ABO中,OA=2米,DC=OB=1.4米,∴AB2=22-1.42=2.04.∵4-2.6=1.4,1.42=1.96,2.04>1.96,答:卡车可以通过,但要小心.解:如图,过半圆直径的中点O,作直径的垂线交下底边于点D,取点C,使CD=1.4米,过C作OD的平行线交半圆直径于B点,交半圆于A点.6.如图,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道?7.在O处的某海防哨所发现在它的北偏东60°方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处.(1)此时快艇航行了多少米(即AB

的长)?北东OAB60°45°C解:根据题意得∠AOC=30°,∠COB=45°,AO=1000米.∴AC=500米,BC=OC.在Rt△AOC中,由勾股定理得∴BC=OC=在O处的某海防哨所发现在它的北偏东60°方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处.(2)距离哨所多少米(即OB的长)?北东OAB60°45°C解:在Rt△BOC中,由勾股定理得例4

在△ABC中,AB=c,BC=a,AC=b,,2c-b=12,求△ABC的面积.解:由题意可设a=3k,则b=4k,c=5k,∵2c-b=12,∴10k-4k=12,∴k=2,∴a=6,b=8,c=10,∵62+82=102,∴a2+b2=c2,∴△ABC为直角三角形,∴△ABC的面积为×6×8=24.考点2勾股定理的逆定理及其应用例5

B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8nmile的速度前进,乙船沿南偏东某个角度以每小时15nmile的速度前进,2h后,甲船到M岛,乙船到P岛,两岛相距34nmile,你知道乙船是沿哪个方向航行的吗?解:甲船航行的距离为BM=16(nmile),乙船航行的距离为BP=30(nmile).∵162+302=1156,342=1156,∴BM2+BP2=MP2,∴△MBP为直角三角形,∴∠MBP=90°,∴乙船是沿着南偏东30°方向航行的.8.下列各组数中,是勾股数的为()A.1,2,3 B.4,5,6 C.3,4,5 D.7,8,99.已知下列图形中的三角形的顶点都在正方形的格点上,可以判定三角形是直角三角形的有________.

(2)(4)

C针对训练10.如图,在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C的关系,并加以证明.解:猜想∠A+∠C=180°.连接AC.∵∠ABC=90°,∴在Rt△ABC中,由勾股定理得

∵AD2+DC2=625=252=AC2,∴△ADC是直角三角形,且∠D=90°,∵∠DAB+∠B+∠BCD+∠D=360°,∴∠DAB+∠BCD=180°,即∠A+∠C=180°.11.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距5nmile的A,B两个基地前去拦截,6min后同时到达C地将其拦截.已知甲巡逻艇的速度为40nmile/h,乙巡逻艇的速度为30nmile/h,且乙巡逻艇的航向为北偏西37°,求甲巡逻艇的航向.解:由题意得AC=40×(6÷60)=4(nmile),BC=30×(6÷60)=3(nmile).∵AB=5nmile,∴AB2=BC2+AC2.∴∠ACB=90°.∵∠CBA=90°-37°=53°,∴∠CAB=37°.答:甲巡逻艇的航向为北偏东53°.考点3勾股定理与折叠问题例6

如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点D与点B重合,折痕为EF,求△ABE的面积.解:∵将长方形折叠,使点D与点B重合,∴ED=BE.设AE=xcm,则ED=BE=(9-x)cm,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9-x)2,解得x=4.∴△ABE的面积为3×4×=6(cm2).方法总结

勾股定理可以直接解决直角三角形中已知两边求第三边的问题;如果只知一边和另两边的关系时,也可用勾股定理求出未知边,这时往往要列出方程求解.11.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE,则CD的长为

1.75cm针对训练考点4本章解题思想方法方程思想

例7

如图,在△ABC中,AB=17,BC=9,AC=10,AD⊥BC于D.试求△ABC的面积.解:在Rt△ABD和Rt△ACD中,AB2-BD2=AD2,AC2-CD2=AD2,设DC=x,则BD=9+x,故172-(9+x)2=102-x2,解得x=6.∴AD2=AC2−CD2=64,∴AD=8.∴S△ABC=×9×8=36.解:当高AD在△ABC内部时,如图①.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,

∴△ABC的周长为25+20+15=60.例8

在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC的周长.分类讨论思想

题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.同理可得BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.方法总结当高AD在△ABC外部时,如图②.例9

有一圆柱体高为8cm,底面圆的半径为2cm,如图.在AA1上的点Q处有一只蜘蛛,QA1=3cm,在BB1上的点P处有一只苍蝇,PB=2cm.求蜘蛛爬行的最短路径长(π取3).解:如图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论