贵州省沿河县九校2024届中考数学考试模拟冲刺卷含解析_第1页
贵州省沿河县九校2024届中考数学考试模拟冲刺卷含解析_第2页
贵州省沿河县九校2024届中考数学考试模拟冲刺卷含解析_第3页
贵州省沿河县九校2024届中考数学考试模拟冲刺卷含解析_第4页
贵州省沿河县九校2024届中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省沿河县九校2024届中考数学考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105 B.5.5×104 C.0.55×105 D.5.5×1052.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a53.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤ B.①②④ C.①③④ D.①③⑤4.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠45.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个6.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A. B. C. D.7.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧 B.点A点B之间C.点B点C之间 D.点C的右侧8.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A. B. C. D.9.如图,已知是中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE10.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()成绩(分)3029282618人数(人)324211A.该班共有40名学生B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分11.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、4012.下列运算错误的是()A.(m2)3=m6B.a10÷a9=aC.x3•x5=x8D.a4+a3=a7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.14.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.15.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.16.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.17.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.18.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?20.(6分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?21.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.22.(8分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.23.(8分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度数;(2)求证:BC是⊙O的切线.24.(10分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.25.(10分)已知:不等式≤2+x(1)求不等式的解;(2)若实数a满足a>2,说明a是否是该不等式的解.26.(12分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.27.(12分)△ABC在平面直角坐标系中的位置如图所示.画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度55000用科学记数法表示为5.5×1.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、A【解析】

直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.3、D【解析】

根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ的面积等于∴AB=DC=8故故②错误当14<t<22时,故③正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA为直角三角形∴只有点P在DC边上时,有△BPQ与△BEA相似由已知,PQ=22﹣t∴当或时,△BPQ与△BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.4、D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.5、C【解析】

根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.6、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A7、C【解析】分析:根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.详解:A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.8、B【解析】

根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.9、C【解析】

根据相似三角形的判定,采用排除法,逐项分析判断.【详解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故C错误.故选C.【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10、D【解析】A.∵32+4+2+1+1=40(人),故A正确;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;C.∵成绩是30分的人有32人,最多,故C正确;D.该班学生这次考试成绩的中位数为30分,故D错误;11、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合题意舍去),∴点P(1,1),∴1=,解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.14、y=﹣x+1【解析】

根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.【详解】∵一次函数y随x的增大而减小,∴k<0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.15、【解析】

如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.【详解】解:如图,设AH=x,GB=y,∵EH∥BC,,∵FG∥AC,,由①②可得x=,y=2,∴AC=,BC=7,∴S△ABC=,故答案为.【点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.16、①②③④【解析】①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ;④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案为:①②③④点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.17、7【解析】

根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.18、117°【解析】

连接AD,BD,利用圆周角定理解答即可.【详解】连接AD,BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案为117°【点睛】此题考查圆周角定理,关键是根据圆周角定理解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(2)证明见试题解析;(2).【解析】

(2)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;(2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.【详解】解:(2)过点O作OM⊥AB,垂足是M.∵⊙O与AC相切于点D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四边形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.20、(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.试题解析:(1)由题意得,==;(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.21、(1)答案见解析;(2).【解析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.试题解析:(1)证明:连结OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB=∠C∴OD∥AC又DE⊥AC∴DE⊥OD∴EF是⊙O的切线.(2)∵AB是直径∴∠ADB=90°∴∠ADC=90°即∠1+∠2=90°又∠C+∠2=90°∴∠1=∠C∴∠1=∠3∴∴∴AD=8在Rt△ADB中,AB=10∴BD=6在又Rt△AED中,∴设BF=x∵OD∥AE∴△ODF∽△AEF∴,即,解得:x=22、(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】

(1)待定系数法即可解题,(2)①求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;②AB扫过的面积是平行四边形ABGE,根据S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的图象的顶点为A(0,4),∴设二次函数表达式为y=ax2+4,将B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函数表达式y=﹣x2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得,解得,,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣×2×4﹣×5×5﹣×2×4﹣×5×5=63﹣8﹣25=1答:图象A,B两点间的部分扫过的面积为1.【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.23、(1)60°;(2)见解析【解析】

(1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;【详解】(1)如图,连接BD,∵AD为圆O的直径,∴∠ABD=90°,∴BD=AD=3,∵CD∥AB,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt△CDB中,tanC=,∴∠C=60°;(2)连接OB,∵∠A=30°,OA=OB,∴∠OBA=∠A=30°,∵CD∥AB,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC为圆O的切线.【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.24、(1);(2)这个游戏不公平,理由见解析.【解析】

(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=,P(乙胜)=.∴P(甲胜)≠P(乙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论