二轮复习13:解直角三角形背靠背、母抱子、拥抱模型解决中考必考解答题_第1页
二轮复习13:解直角三角形背靠背、母抱子、拥抱模型解决中考必考解答题_第2页
二轮复习13:解直角三角形背靠背、母抱子、拥抱模型解决中考必考解答题_第3页
二轮复习13:解直角三角形背靠背、母抱子、拥抱模型解决中考必考解答题_第4页
二轮复习13:解直角三角形背靠背、母抱子、拥抱模型解决中考必考解答题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页中考二轮复习13:解直角三角形背靠背、母抱子、拥抱模型解决中考必考解答题模型一:背靠背模型【模型展示】【中考真题】1、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)【精典例题】1、由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里,再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.2、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是____m(结果保留根号).3、放置在水平桌面上的台灯的平面示意图如图所示,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC.(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,eq\r(3)≈1.73)4、如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60°方向上,位于B市北偏西45°方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A,B两市的高速公路,高速公路AB是否穿过风景区?通过计算加以说明.(参考数据:≈1.73)5、在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离;(2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.6、如图,要在江苏省某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程工程需尽快完成.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.求甲、乙两工程队单独完成此项工程所需的天数.7、如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路AC的长(结果保留整数).参考数据:sin67°≈0.92;cos67°≈0.38;≈1.732.8、如图,一架无人机在距离地面高度为21.4米的点B处,测得地面点A的俯角为47°,接着,这架无人机从点B沿仰角为37°的方向继续飞行20米到达点C,此时测得点C恰好在地面点D的正上方,且A,D两点在同一水平线上,求A,D两点之间的距离.(结果精确到1米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,≈2.45)9、如图,某海监船向正西方向航行,在A处望见一艘正在作业的渔船D在南偏西45°方向,海监船航行到B处时,望见渔船D在南偏东45°方向,又航行半小时到达C处望见渔船D在南偏东62°方向,若海监船的速度为40海里/小时,求A、B之间的距离.(精确到0.1海里,参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)10、科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)母抱子模型:【模型展示】【中考真题】1、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).2、如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【精典例题】1、如图,一艘轮船在A处时观测得小岛C在船的北偏东60°方向,轮船以40海里/时的速度向正东方向航行1.5小时到达B处,这时小岛C在船的北偏东30°方向.已知小岛C周围50海里范围内是暗礁区.(1)求B处到小岛C的距离(2)若轮船从B处继续向东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.73)2、金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)3、如图,为了测得电视塔AB的高度,在D处用高为1m的测角仪CD测得电视塔顶端A的仰角为30°,再向电视塔方向前进100m到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔AB的高度(单位:m)为(C)A.50eq\r(3)B.51C.50eq\r(3)+1 D.1014、(2019·山东菏泽定陶三模)如图,小明在热气球A上看到横跨河流两岸的大桥BC,测得B,C两点的俯角分别为60°和45°,已知热气球离地面的高度为120m,且大桥与地面在同一水平面上,求大桥BC的长度.(结果保留整数,eq\r(3)≈1.73)解:如图,作AD⊥CB交CB所在直线于点D.某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)6、某矩形交通指示牌CDEF如图所示,AB的距离为5m,从A点测得指示牌顶端D点和底端C点的仰角分别是60°和45°,则指示牌的高度CD约为m.(精确到0.1m.参考数据:≈1.414,≈1.732)7、为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)8、广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD的高.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)9、如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1:2.求大树BC的高度约为多少米?(≈1.732,结果精确到0.1)模型三:拥抱模型【精典例题】1、某数学兴趣小组学过锐角三角函数后,到市龙源湖公园测量塑像“夸父追日”的高度,如图所示,在A处测得塑像顶部D的仰角为45°,塑像底部E的仰角为30.1°,再沿AC方向前进10m到达B处,测得塑像顶部D的仰角为59.1°.求塑像“夸父追日”DE高度.(结果精确到0.1m.参考数据:sin30.1°≈0.50,cos30.1°≈0.87,tan30.1°≈0.58,sin59.1°≈0.86,cos59.1°≈0.51,tan59.1°≈1.67)2、今年由于防控疫情,师生居家隔离线上学习,AB和CD是社区两栋邻楼的示意图,小华站在自家阳台的C点,测得对面楼顶点A的仰角为30°,地面点E的俯角为45°.点E在线段BD上,测得B,E间距离为8.7米,楼AB高12米.求小华家阳台距地面高度CD的长.(结果精确到1米,≈1.41,≈1.73)3、数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,eq\r(3)≈1.73)4、如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°.此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)5、某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为.(参考数据:tan37°≈,tan53°≈)6、如图,为测量湖面上小船A到公路BC的距离,先在点B处测得小船A在其北偏东60°方向,再沿BC方向前进400m到达点C,测得小船A在其北偏西30°方向,则小船A到公路BC的距离为m.7、如图,AB为某段长为10km的海岸线,码头B在码头A的东偏北30°方向上,灯塔C在码头B正北方向,码头A正西方向有一艘船D向码头A方向行驶,从船D观测,灯塔C在船D的东偏北37°方向,在灯塔C观测码头A在灯塔C的南偏西30°方向,求此时船D与码头A的距离(精确到0.1km.参考数据:=1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)8、科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)9、如图,在东西方向的海面线MN上,有A,B两艘巡逻船,两船同时收到渔船C在海面停滞点发出的求救信号,测得渔船分别在巡逻船A,B的北偏西30°和北偏东45°方向,巡逻船A和渔船C相距120海里.(结果取整数,参考数据:≈1.41,≈1.73,≈2.45)(1)求巡逻船B与渔船C间的距离;(2)已知在A,B两艘巡逻船间有一观测点D(A,B,D在直线MN上),测得渔船C在观测点D的北偏东15°方向,观测点D的45海里范围内有暗礁.若巡逻船B沿BC方向去营救渔船C,问有没有触礁的危险?并说明理由.10、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向.轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向,这时,E处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)模型四、斜截模型【精典例题】1、如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,eq\r(2)≈1.414,eq\r(3)≈1.732)2、为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°,同时测得教学楼窗户D处的仰角为30°(A,B,D,E在同一直线上).然后,小明沿坡度i=1∶1.5的斜坡从C走到F处,此时DF正好与地面CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若小明在F处又测得宣传牌顶部A的仰角为45°,求宣传牌的高度AB(结果精确到0.1米,eq\r(2)≈1.41,eq\r(3)≈1.73).3、如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.求:(1)P到OC的距离.(2)山坡的坡度tanα.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)4、如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论