




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学上册全册导学案
目录
11.1全等三角形的判定(一)(1)...............................................1
11.2三角形全等的判定(2)..................................................3
11.2全等三角形的判定(3)...................................................5
11.2全等三角形的判定(三)(4)...............................................7
11.2全等三角形的判定HL的判定(5).......................................9
11.3角的平分线的性质(6)..................................................11
11.3角的平分线(7)..........................................................14
12.1轴对称(一)(8).........................................................16
12.1轴对称(9).............................................................18
12.1轴对称(三)(10).......................................................20
12.1轴对称(11)........................................................22
12.2.1作轴对称图形(12).....................................................24
12.2.1作轴对称图形(13).................................................26
12.2.2用坐标表示轴对称(14).............................................28
12.3.1等腰三角形(15).............................................31
12.3.1等腰三角形(二)(16)................................................33
12.3.2等边三角形(17).....................................................35
12.3.2等边三角形(二)(18)................................................37
13.1平方根(19)...........................................................39
13.3平方根(二)(20)......................................................41
13.2立方根(21)...........................................................43
13.3实数(22).............................................................45
13.3实数(23).............................................................47
11.1全等三角形的判定(一)(1)
一、学习目标
1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练确定全等三角形的对应元素。
二、自学指导
自学课本P2—3页,完成下列要求:
1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展小内容:
1、相同的图形放在一起能够o这样的两个图形叫
做O
2、能够的两个三角形叫做全等三角形。
3、一个图形经过—、—、―后位置变化了,但形状'大小都没有改变,
即平移、翻折'旋转前后的图形o
4、叫做对应顶点.叫做对应边。叫
做对应角。
5、全等三角形的对应边一o相等。
6、课本P4练习1、2
7、如图1,AABC^ADEF,对应顶点是,对应角是
________________________,对应边是__________________________________
第1页共54页
8、如图2,AABC^ACDA,AB和CD,BC和DA是对应边,写出其他对
应边及对应角______________________________________________________
9、如图3,△ABN^^ACM,ZB=ZC,AC=AB,则BN=,Z
BAN=,=AN,=ZAMC.
10、如图,AABC^ADEC,CA和CD,CB和CE是对应边,ZACD
和NBCE相等吗?为什么?
第2页共54页
课后反思:______________________________________________
11.2三角形全等的判定(2)
一、学习目标
1、掌握三角形全等的判定(SSS)
2、初步体会尺规作图
3、掌握简单的证明格式
二、自学指导
认真阅读课本P6—8页,完成下列要求:
1、小组讨论探究lo(1)满足一个或两个条件的两个三角形是否全等。(2)
满足3个条件时,两个三角形是否全等。注意分类。
2、小组讨论探究2,交流合作,初步体会尺规作图(具体按第7页画图步骤)
3、掌握三角形全等的判定之一(SSS)
4、自主学习例1,初步体会证明的基本过程,并会利用判定(SSS)进行简单
的推理,注意过程格式。
5、利用判定(SSS)作一个角等于已知角,具体按第8页作法的具体步骤。
6、自学后完成展示的内容,20分钟后,进行展示。
第3页共54页
AA
三、展示内容:1、P8,练习
2、如图,AB=AD,CB=CD,求证:△ABCgZkADC
3、如图C是AB的中点,AD=CE,CD=BE,
求证:Z\ACD乌Z\CBE
4、如图,AD=BC,AC=BD,
求证:(1)ZDAB=ZCBA(2)ZACD=ZBDC
第4页共54页
5、如图,已知点B、E、C、F在同一条直线上,AB=DE,
AC=DF,BE=CF,
求证:(1)AABC^ADEF
(2)AB//DE
课后反思:_________________________________
11.2全等三角形的判定(3)
一、自学目标:
1、会画一个三角形与已知三角形全等(根据两边与夹角对应相等)
2、理解并掌握边角边的判定方法
3、利用边角边判定方法解决实际问题
4、探究具备“SSA”条件的两个三角形是否全等?
二、自学指导
认真阅读课本第8—10页的内容,完成下列要求:
1、小组合作学习探究2,注意画图时的规范,用尺规作图注意画法。
2、通过画图发现规律:的两个三角形全等。
3、认真学习例2后,我们得到:在证明两个三角形中线段相等或角相等时通
常通过证明来解决。
4、自学后完成展示的内容,20分钟后,进行展示。
第5页共54页
三、展示内容:
1、如图1已知4ABF与4DCE中,ZB=ZC,BE=CF,AB=CD,则4
___
2、如图2已知AB
=AC,AD=AE,Z1=Z2,
求证:4ABD丝Z\ACE
证明:VZ1=Z2()
:.Zl+=N2+()
即NBAD=NCAE
在4ABD和aACE中
_______________________()
_______________________()
_______________________()
/.()
3、如图要测量工件内槽宽,可以把两根钢条的中点连在一起,做成一个工具,
只要测量出—的长,就是内槽的宽,为什么?
第6页共54页
4、如图AB=AC,AD=AE,求证:(1)ZB=ZC(2)ZBDC=ZBEC
课后反思:_______________________________________
11.2全等三角形的判定(三)(4)
学习目标:
1、掌握全等三角形的判定方法--“ASA”“AAS”。
2、理解并运用“ASA”“AAS”解决相关问题。
自学指导:
1、自学课本11—12页内容,完成下列要求:
2、认真学习探究5的内容,按照课本提示的操作步骤动手
操作,完成后,归纳探究5反映的规律。
第7页共54页
3、认真阅读探究6,合作探究:要运用-“ASA”证明“两角
和其中一角的对边对应相等的两个三角形全等”关键点是什么。
4、学习例3,考虑要证明△ACDZ^ABE还需要的条件。
5、自学后完成要展示的内容,-20分钟后进行展示。
展示内容:
1、指导2反映的规律是:的两个三
角形全等。简写为:“"、或“
2、指导3中关键点是:___________________________________
3、完成课本13页1一2题。
4、归纳三角形全等的判定方法:
5、如图:D在AB上,E在AC上,DC=EB,
ZC=ZB
求证:(1)AACDgAABE
(2)AC=AB
第8页共54页
A
课后反思:______________________________________
11.2全等三角形的判定HL的判定(5)
一、学习目标
1、掌握RT△特殊的判定方法:HL判定方法
2、能够用HL判定方法来判定两个RT△全等
第9页共54页
二、自学指导
认真13阅读一14页内容,要求掌握以下内容
1、前面学习的判定方法,直角三角形是否还能用?
2、理解画RTAA,B,C,的过程,并由这个过程得出RT△的
判定方法:,简称
3、在学习探究时,一定要动手画图呀!
4、学习例4,想一想,要证BC=AD,需要证明什么?
5、学后完成展示内容,20分钟后展示
三、展示内容
1、已知如图RT4ADC与RT4BEC中,NA=NB=90°,AC=
6cm,AD=BE,CD=CE,则AB=
2、已知如图RTAABC与RTADEF中,
若AC=FD,ZE=ZB=90°,BC=DE,
NA=25°,则NF=,ZD=
第10页共54页
3、如图AB=CD,AE±BC,DF±BC,CE=BF
求证:(1)AE=DF
c
(2)CD//AB
课后反思:
11.3角的平分线的性质(6)
一、学习目标
1、分用改尺规画出一个角的平分线(会说作法)
第11页共54页
2、理解并掌握角平分线的性质
3、感受证明一个儿何命题的方法与步骤
二、自学指导
1、自学课本19页(10分钟)
(1)说出探究中AE是NDAE的平分线的理由
(2)作图时要读一步画一步
2、自学20—21页思考前的内容(6—10分钟)
(1)独立动手完成探究,从而得出角平分线的性质:角的平分线
上的点。
(2)注意体会角平分线的性质这个命题是如何画出图形,写出已
知、求证的。
三、展示内容
P19页练习
1、已知NA0B的角平分线0C,点P在0C上,且点P到0A的距
离为4cm,则点P到边0B的距离是
2、如图在4ABC中,ZC=90°,AD平分NBAC,
BC=10cm,BD=6cm,则点D到AB的距离为
第12页共54页
3、△ABC中,AB=AC,M为BC中点,MDLAB于D,ME_LAC于E,
求证:MD=ME
3
4、已知AABC内,ZABC,NACB的角平分线交于点P,且PD、
PE、PF分别垂直于BC、AC、AB于D、E、F三点,求证:PD=PE
课后反思
第13页共54页
1L3角的平分线(7)
学习目标:
1、掌握角平分线的判定
2、会运用角平分线的判定解决简单的问题。
自学指导:
认真学习课本21—22页的内容,完成下列要求:
1、找出角平分线判定的题设与结论,并与角平分线性质的题设和结
论进行比较。
2、合作探究“思考”部分的内容:要确定集贸市场的准确位置(1)
根据角平分线的判定,能否确定集贸市场在公路与铁路夹角的平
分线上。(2)再依据集贸市场离两路交叉处的距离。
3、认真学习例题,注意辅助线的作法。
4、自学后,完成展示内容,20分钟后进行展示。
展示内容:
1、课本22页练习。
2、角的内部的点在角的平分线上。
3、如图,^ABC的角平分线BM、CN交于点P,求证:点P到AABC三边
的距离相等。
证明:过点P作PD_LAB于D,PE_LBC于E,PF_LAC于F。(把辅助线补充完整)
BM是AABC的角平分线,点P在BM上
APD=o
同理:PE=.
APD==.
即点P到三边AB、BC、CA的距离相等。
4、求证:角的内部到角的两边距离相等的点,在角的平分线上。
已知:如图,PDLAB于D,PEL—于E,PD=.点P在0C上。
求证:ZA0C=
证明:
第14页共54页
AD;
EBAC
45
5、在△ABC中,外角NCBD和NBCE的平分线BF、CF相交于点F.
求证:点F也在NBAC的平分线上。
(提示:过点F作AD、BC、AE的垂线段FN、FM、FP,然后证FN=FP)
课后反思:
第15页共54页
12.1轴对称(一)(8)
学习目标:
1、理解什么是轴对称图形;
2、理解什么是“两个图形关于一条直线对称”;
3、能够说出轴对称与轴对称图形的区别与联系。
自学指导
1、自学29页,重点掌握,完成30页练习;
2、自学课本30页,图12・1-3是个图形,关系。
请找出图中A、B、C的对称点A'、B'、C'
3、轴对称图形与轴对称的区别与联系
展示内容
1、如果一个图形沿一条直线折叠,直线两旁的部分能够,
这个图形就叫做,这条直线就是它的o
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形
,那么就说这两个图形。
3、教材P30练习与P31练习。
第16页共54页
4、教材P30与P31的思考,找同学回答。
5、教材P36习题12.1的1、2.
第17页共54页
课后反思:
12.1轴对称(9)
一、学习目标
1、识记线段垂直平分线的定义
2、理解轴对称图形的性质
3、掌握并会用线段垂直平分线的性质
二、自学指导(15分钟)
认真阅读P31页思考一P32页探究前的内容
(1)思考部分可在课本上沿MN对折或用测量的方法进行探究
(2)探究部分要动手操作,找出你发现的规律:PA=—,P2A=
(特别注意1与线段AB的关系)
由此可得到线段垂直平分线的性质:
三、展示内容
1、如图,AABC中,AD垂直平分BC,AB=5,则AC=
2、△ABC与AA,B,C,关于直线1对称,且AB=4cm,
则A,B,=
3、如图4ABC与4DEF关于直线MN对称,直线
MN与线段AD的关系是
E
第18页共54页N
3
4、如图4ABC中BC的垂直平分线交AB于E,若AABC的周长为10,BC=
4,则aACE周长为
5、如图AD±BC,BD=DC,点C在AE的垂直平分
线上,AB、CE的长度有什么关系,AB+BD与
DE有什么关系?
第19页共54页
课后反思
12.1轴对称(三)(10)
学习目标:
1、掌握线段垂直平分线的判定
2、熟练运用线段垂直平分线的性质和判定解决实际问题。
自学指导:
1、自学课本33—34页的内容,完成下列要求:
2、合作探究:课本探究的内容中,思考:箭尾应放在橡皮
筋的什么位置。
3、自学后完成要展示的内容,-20分钟后进行展示。
展示内容:
1、如图,AD±BC,BD=DC,点C在AE的垂直平分线上,AB,AC,CE
的长度有什么关系?AB+BD与DE有什么关系?
第20页共54页
AA
2、如图,AB=AC,MB=MC,直线AM是线段BC的垂直平分线吗?
3、试证:到一条线段距离相等的点,在这条线段的垂直平分线上。
4、三角形中,分别画出边AB,BC的垂直平分线,若这两条垂直平
分线交于点O,则点O是否在垂直平分线上。说明理由:
第21页共54页
课后反思:______________________________________
12.1轴对称(11)
一、学习目标
1、会用尺规作图,画线段的垂直平分线
2、会画轴对称图形的对称轴
二、自学指导
1、自学课本34—35页的内容(7—8分钟)
2、阅读例题,注意线段垂直平分线的画法,边看边动手操作
3、作轴对称图形的对称轴,就是作出的垂直平分
线
三、展示内容
1、线段垂直平分线的画法(保留痕迹)
第22页共54页
已知:线段AB,求作:线段AB的垂直平分线
(1)以A为圆心,以大于1/2AB和长为半径作弧
(2)以—为圆心,以—的长为半径作弧,两弧交于—,
—两点。
(3)作直线,则为所求的直线
2、课本练习1、2、3
3、下列各图形是轴对称图形吗?如果是,画出它们的一条对称
轴
第23页共54页
4、平面内两条相交直线是轴对称图形吗?如果是,它有几条对
称轴?画画看。
课后反思
12.2.1作轴对称图形(12)
学习目标:
会画一个图形关于一条直线的轴对称图形
自学指导:
第24页共54页
自学课本39——41页的内容,完成以下要求:
1、结合39页第一自然段的内容,动手操作
(1)、利用线段中线的知识验证,左脚印与右脚印对应
两点P与P'的连线是否被折痕垂直平分
(2)、观察对比左脚印与右脚印的形状、大小是否变化
2、认真阅读教材40页例1,边看边操作,在练习本上完
成操作的步骤,然后合作交流,归纳已知一条直线画一个
几何图形的轴对称图形的技巧
3、学生自学后,完成展示的内容,20分钟后学生分组展
示
展示内容
1、一个图形与它的轴对称图形的、完全
相同;
2、连接一对对应点的线段被______________垂直平分
3、几何图形都可以看做由点组成,只要分别作出这些点
关于对称轴的点,再连接这些___点,就
可以得到原图形的轴对称图形;
4、对于一些由直线、线段或射线组成的图形,只要作出
图形中的一些的对称点,连接这些对称点,就
第25页共54页
可以得到原图形的图形;
5、完成教材41页练习1——2;
6、下面哪些汉字经轴对称变换后所成的整体图形仍是
汉字
HI月I±1木IAI
A.②④⑤B.①②④⑤C.①②③④⑤D.④⑤
7、李明从镜子里看到自己身后的钟表上的时间是8点35
分,请问钟表上显示的实际时间是()
A.3:20B,2:25C,3:25D,4:20
课后反思:
12.2.1作轴对称图形(13)
一、学习目标
会用轴对称图形的性质解决实际问题
第26页共54页
二、自学指导
学习课本42页内容,完成下列要求:
1、学习探究的内容,将探究中的问题转化为数学问题
2、(1)若两镇A、B在管道异侧,怎样确定泵站的位置
(2)管道同侧两点A、B,利用轴对称的性质能否转化为异
侧两点A、B'(或A'、B)
3、自学后完成展示的内容,20分钟后进行展示
三、展示内容
1、指导1中,转化为数学问题是
2、已知直线1及其异侧两点A、B,在直线1上求作一点C,使AC
+BC最短(画出画法)
.A
.B
3、一条河的同侧有A、B两个村庄,现在要在河边修一个水泵站,
第27页共54页
修在什么位置,才能使水泵站到A、B两村的距离和最小
课后反思:
12.2.2用坐标表示轴对称(14)
学习目标
第28页共54页
1、在坐标平面内会写出已知点关于x轴,y轴对称点的坐
I小°
2、在平面内会画已知多边形关于x轴,y轴对称的多边形。
二、自学指导
自学教材43—45页内容
1、认真学习思考部分的内容,确立西直门的坐标
2、通过解决本页填空题,总结在平面直角坐标系内,关于x
轴(或y轴)对称的两个点坐标的特点
3、在平面直角坐标系中作一个图形关于坐标轴对称的图
形,关键是求出已知图形中的一些特殊点的对称点的坐标。
三、展示
1、指导2中点(x,y)关于x轴的对称点的坐标为(_,
_)
点(x,y)关于y轴的对称点的坐标为(_,_)
2、课本44页第1题
第29页共54页
3、课本45页第2题
4、课本45页第3题
5、课本46页第8题
课后反思:
第30页共54页
12.3.1等腰三角形(15)
一、学习目标
1、掌握等腰三角形的性质1、2
2、会利用等腰三角形的性质解决简单问题
二、自学指导
自学课本49—51页内容,完成下列要求
1、认真学习探究的内容,边看边操作、思考
(1)剪出的等腰三角形是否为轴对称图形
(2)把剪出的等腰三角形沿折痕对折,找出其中重合的线段和角
2、认真学习等腰三角形性质的证明部分,注意辅助线的添加方
法,体会能否可以添加底边上的高或顶角的平分线。
3、学习例1,体会等腰三角形性质的应用。
4、自学后完成展示内容,20分钟后进行展示。
三、展示内容
1、等腰三角形的两个底角,简写成
2、等腰三角形的顶角平分线、相互重合。
3、已知aABC中,AB=AC,ADLBC于D,求证:
(1)ZB=ZC(2)ZBAD=ZCAD(3)BD=CD
第31页共54页
4、如图,在下列等腰三角形中,分别求出它们的底角的度数。
5、在ANINP中,MN=MO=OP,ZNMO=26"•求NN和NP
M
课后反思:
第32页共54页
12.3.1等腰三角形(二)(16)
一、学习目标
1、掌握等腰三角形的判定方法
2、利用等腰三角形的判定方法
(1)证明相关问题
(2)辅助以尺规作图手段作等腰三角形
二、自学指导
自学课本51—53页内容,完成下列要求:
1、通过预习,思考51页内容后,你有哪些方法证明“等角对
等边”这一结论?小组交流,互相探讨。
2、阅读例2,注意在证明一个三角形为等腰三角形时,关键就
是找这个三角形中两条边相等或两角相等。
3、学习例3的内容,边看边操作,体会已知底边和底边上的高,
用尺规作等腰三角形的方法。
4、自学20分钟后展示。
三、展示内容:
1、等腰三角形的判定方法:如果,那么—
第33页共54页
简写成“"
2、已知aABC中,ZB=ZC,求证:AB=AC
3、已知线段BC和BC上的高AD,BC=4cm,AD=3cm,求
作等腰三角形ABC
4、如左下图,NA=36°,NC=72°/DBC=36°•分别计算
NBDC、NABD的度数,并说明图中有哪些等腰三角形。
5、如图(上右),AC和BD相交于O,且AB〃DC,OA-OB,
求证:OC=OD
第34页共54页
课后反思:
12.3.2等边三角形(17)
一、自学目标
1、了解等边三角形的定义
2、掌握等边三角形的性质也判定
二、自学指导
认真阅读课本53—54页的内容,完成下列要求:
1、请你用等腰三角形的性质证明等边三角形的性质
2、在证明判定2时注意60°的角是等腰三角形的顶角或底角
3、合作交流例4的其它证法
4、自学后完成展示内容,20分钟后进行展示
三、展示内容
1、一个三角形一边的中线和高线重合,那么这个三角形是—
2、等腰三角形顶角的外角平分线与底边的位置关系是
3、一个等腰三角形有三条对称轴,那么它就是三角形。
4、在aABC中,AB=AC,且NA=60。,则△ABC是三角
形。
第35页共54页
5、选择:下列叙述正确的是()
A、等腰三角形是等边三角形B、所有的等边三角形形状都相同,
所以全等C、三个角之比为1:2:3的三角形是等腰三角形
D、等边三角形的三条中线是它的三条对称轴
6、选择:如图在等边AABC中,0为三条高线的交点,连结OB、0C
那么NBOC=()A、100°B、90°C、150°D、120°
7、等边三角形的判定2方法证明过程
8、0是等边三角形ABC内一点,Z0CB-ZAB0,求NB0C的度数
9、等边三角形的三条中线交于一点,画出图中所有的全等三角形,
第36页共54页
并能说出它们是否全等?为什么?
课后反思:
12.3.2等边三角形(二)(18)
一、学习目标
1、掌握含30°的直角三角形的对边与斜边的关系
2、能够证明这个关系
二、自学指导
认真阅读课本55—56页内容,按要求完成下列内容
1、探究部分的内容动手操作
2、合作探究其它的证明方法
3、学习例5
三、展示内容
(―)填空:
1、RTAABC中,ZC=90°,ZB=2ZA,则NA=,ZB=,AB=_BC
2、三角形的三个内角度数之比为1:2:3,最大边是8,则最小边为
3、如图RTZXABC中,NB=90",BDJ_AB于D,且NA=60",BD=4cm,则
B
3
BC=_____
第37页共54页
(二)选择:
1、已知等腰三角形周长为40,以一腰为边作等边三角形,其周长为45,那么
等腰三角形底边边长是()
A、5B、10C、15D、20
2、等腰4ABC中,NA=40",则NB=()
A、70°B、40°c、40°或70°D、60°
3、已知等腰三角形两边长为7和3,则它的周长为()
A、17B、16C、17或13D、13
(三)解答
1、如图4ABC是等边三角形,AD为中线,AD=AE,求NEDC的度数
2、Z\ABC为等边三角形,且DELBC,垂足为D,EF1AC,垂足为E,FD±AB,
垂足为F,则4DEF是等边三角形吗?这什么?
第38页共54页
课后反思:
13.1平方根(19)
学习目标:
1、理解数的算术平方根的概念,并会用符号表示。
2、理解平方与开平方是互为逆运算。
3、会求一些非负数的算术平方根。
自学指导:
认真学习课本68—71页的内容,完成下列要求:
1、G中被开方数a的范围怎样。0的算术平方根的意义。
2、完成例1,注意例1的书写格式。
3、学习例3的内容,注意历与7是怎样比较的。
4、自学后完成展示内容,20分钟后进行展示。
展示内容:
1、•••22=4的算术平方根是—即—
9
V・•・上的算术平方根是—即—
16
2、•.•正数a的算术平方根是,2的算术平方根是
•••4的算术平方根是2,=
3、求下列各数的算术平方根:
第39页共54页
⑴0.0025(2)121(3)y(4)(一3)(5)7
4、求下列各式的值:
(1)V1(3)7^2)
5、计算下列各式:
(1)-V144+V81
(3)
6、求下列各等式中的正数x
21692
(1)x=((2)4X—121=0
7、比较下列各组数的大小。
第40页共54页
(1)7140与12(2)占二1与0.5
2
课后反思:
13.3平方根(二)(20)
一、学习目标
1、理解平方根的概念
2、了解开平方的定义
3、掌握平方根的性质
二、自学指导
认真阅读72—74页内容,完成下列要求:
1、说明:一个正数a的算术平方根有一个,平方根有一个,并且互
为,0的平方根是。
2、负数有没有平方根,为什么?
3、注意根号前的符号
4、自学20分钟后,进行展示活动
三、展示内容
第41页共54页
(1)V169(2)-V0.0049
3、平方根起源于正方形的面积,若一个正方形的面积为A,那么这个正
方形的边长为多少?
4、判断下列说法是否正确
(1)5是25的算术平方根()
(2)3是竺的一个平方根()
636
(3)(—4)的平方根是一4()
(4)0的平方根与算术平方根都是0()
5、下列各式是否有意义,为什么?
(1)-V3(2)C(3)(4)后
6、求下列各式的x的值
2
(1)/=25(2)X-81=0
2
(3)25£=36(4)2X-18=0
第42页共54页
课后反思:
13.2立方根(21)
学习目标:
1、理解并掌握立方根的概念,会用符号表示一个数的立
方根。
2、会求一个数的立方根。
自学指导:
自学课本77—78页内容,完成下列要求:
1、理解立方根的概念,理解立方与开立方是互为逆运算。
2、独立完成7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年食品质检员的考试结构与答案
- 2024年汽车美容行业的新兴技术试题及答案
- 2024年电瓶检测与更换流程试题及答案
- 汽车美容师市场营销与客户需求识别试题及答案
- 心理健康教育活动课
- 果汁店创新创业计划书
- 2024年公务员省考与汽车行业方位试题及答案
- 汽车售后服务发展的重要性分析试题及答案
- 2024年汽车维修工电工基础知识试题及答案
- 2024年汽车美容师客户反馈处理试题及答案
- 消防员应急救援安全应知应会试题及答案
- Unit+5+The+Monarchs+Journey+Language+points+课件-【知识精讲精研】高中英语外研版(2019)必修第一册+
- 幼儿园优质公开课:小班综合《小鸡过生日》课件
- 《新媒体推广》项目二图文推广-课前自学
- 挂篮检查验收记录表
- 召回产品处理登记表
- PCB的DFM评审报告模板
- 3q认证3q认证模板
- 电机能效对照表
- 第4章-甲壳素和壳聚糖-天然高分子材料资料讲解课件
- 企业动态能力研究梳理与展望论文
评论
0/150
提交评论