2025年小升初数学必考重点知识总复习资料(完整版)_第1页
2025年小升初数学必考重点知识总复习资料(完整版)_第2页
2025年小升初数学必考重点知识总复习资料(完整版)_第3页
2025年小升初数学必考重点知识总复习资料(完整版)_第4页
2025年小升初数学必考重点知识总复习资料(完整版)_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年小升初数学必考重点知识总复习资料(完整版)三年级上复习内容:※列竖式,要牢记,数位要对齐,符号要看清,加法式子里,满10要进1,减法式子里,不够减时向前借。※

封闭图形一周的长度,是它的周长。※

长方形的周长=(长+宽)×2正方形的周长=边长×4※

平行四边形的对边相等,对角相等。※在有余数的除法里,余数一定小于除数。

※1小时=60分1分钟=60秒★秒针走1小格是()秒,走1大格是()秒,走一圈是()秒,也就是()分钟。★分针走1小格是()分钟,走1大格是()分钟,走一圈是()分钟,也就是()小时。※0乘任何数都得0三年级下复习内容:1、东与西相对,南与北相对。

2、地图通常是按上北下南,左西右东绘制的。

3、指南针可以帮助我们辨别方向。

注:要知道八个方位,能根据给出的示意图描述出地点的位置。

4、0除以任何不是0的数都得0。

5、0乘任何数都得0。

注:在除法算式中,0不能做除数。

乘除法的估算必须会。用4舍5入法。

如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70的5600。

除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),然后再口算480÷8得60。

能正确计算两位数乘两位数,如:57×89;能准确计算出除数一位数的除法,如:417÷4,并会用乘法验算,被除数=除数×商+余数

6、一年有12个月;一年有4个季度。(123月为第1季度、456月为第2季度、789月为第3季度、10、11、12月为第4季度)

7、记大小月的方法:1、3、5、7、8、10、腊,31天用不差;4、6、9、冬30整,只有2月有变化。

8、平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。

9、、闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。

10、公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、2000、2400等是闰年。

11、年月日、时分秒都是时间单位。

12、在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。

13、1日(天)=24小时

1小时=60分

1分=60秒

14、一个人今年20岁,但只过了5个生日,他是2月29日出生的。

15、计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到2008年10月1日,是中国成立(59)周年。用2008-1949=59周年

注:要正确区分平年和闰年,知道4月一闰,整百年份是400年一闰。会求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。

16、物体的表面或封闭图形的大小,就是他们的面积。

17、比较两个图形面积的大小,要用统一的面积单位来测量。

18、常用的面积单位有平方厘米,平方分米、平方米。

19、边长1厘米的正方形面积是1平方厘米。

20、边长1分米的正方形面积是1平方分米。

21、边长1米的正方形面积是1平方米。

22、边长100米的正方形面积是1公顷(10000平方米)。

23、边长1千米(1000米)的正方形面积是1平方千米。

24、测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。

25、长方形的面积=长×宽26、正方形的面积=边长×边长

27、长方形的周长=(长+宽)×228、正方形的周长=边长×4

29、正方形的边长=周长÷430、相邻的两个常用的长度单位间的进率是10。

31、相邻的两个常用的面积单位间的进率是100。

32、1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米1平方千米=100公顷

注:面积和周长是不能相比较的;能正确进行面积单位间的换算;分清楚什么时候填长度单位,什么时候填面积单位,填土地面积单位时,比较小的土地面积(如:公园、体育场馆、超市、果园、广场)等一般情况下填公顷;(城市的占地、国家的面积、江河湖海的面积)等一般情况下填平方千米。

33、把1米平均分成10份,每份是1分米;用米作单位是1/10米,也是0.1米。3份就是3分米、3/10米、0.3米。

34、把1米平均分成100份,每份是1厘米;用米作单位是1/100米,也是0.01米。7份就是7厘米、7/100米、0.07米。

注:一位小数的形式实际上是分数十分之几的另外一种表示形式,4/10写成小数就是0.4,在一个小数的末尾添上0,小数的大小不变,如:10.05,在它的末尾添上0,就变成了10.050,10.05=10.050=10.0500=10.05000……大小没有发生变化。与比较小数的大小,基本和整数的比较大小相同。四年级上复习内容:一、数与计算整数数位顺序表数级

亿级万级个级数位…千亿位百亿位十亿位

亿位千万位百万位十万位

万位

千位

百位

十位

个位计数单位…千亿百亿十亿

亿千万百万十万

一1、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。2、看表说一说:如10个一千万是一亿,一千万是10个一百万。3、30840000860是由3个百一、8个亿、4个千万、8个百、6个十组成;也可以说是由308个亿、4000个万、860个一组成。4、“四舍五入”法:4、3、2、1、0舍去;5、6、7、8、9舍去后向前一位进1。5、用“=”和“≈”的区别:7580000=758万7508000≈751万9000000000=90亿9420000000≈94亿6、表示物体个数的1,2,3,4,5,6,7,8,9,10,11,…都是自然数。一个物体也没有,用0表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。0不能作除数。比如:5÷0不能得到商,因为找不到一个数同0相乘得到5;又如:0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。7、,另一个因数乘几或除以几,积也随着乘几或除以几。在除法里,被除数和除数都乘或除以同一个数(0除外),商不变。在除法里,除数不变,被除数变大,商也变大。在除法里,被除数不变,除数变大,商反而变小。二、空间与图形1、线段有两个端点,可以量出长度。射线只有一个端点,可以向一端无限延伸。从一点出发可以画无数条射线。直线没有端点,可以向两端无限延伸。经过任意一点可以画无数条直线,经过任意两点只能画一条直线。2、从一点引出两条射线所组成的图形叫做角。量角的大小,要用量角器。角的大小与角的两边画出的长短没有关系,角的大小要看两条边叉开的大小锐角:小于900直角=900钝角:大于900而小于1800平角=1800周角=36003、在同一个平面内不相交的两条直线叫做平行线,如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。4、从直线外一点到这条直线所画的垂直线段最短,长度叫做5、平行线之间的距离处处相等。6、两组对边分别平行的四边形叫做平行四边形。平行四边形容易变形。长方形和正方形可以看成是特殊的平行四边形。只有一组对边平行的四边形叫做梯形。两腰相等的梯形叫做等腰梯形。7、四边形之间的关系图。8、平行四边形:两组对边分别平行;两组对边分别相等。长方形:两组对边分别平行;两组对边分别相等;有4个直角。正方形:两组对边分别平行;两组对边分别相等;四边相等,4个直角。长方形有2条对称轴,正方形有4条对称轴,等腰梯形只有1条对称轴。三、熟记数量关系速度×时间=路程单价×数量=总价四年级下复习内容:(一)四则运算:1、

运算顺序:1、在没有括号的算式里,如果只有加减法或只有乘除法,都要从左往右按顺序(依次)计算。

2、在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。

3、算式里有括号时,要先算括号里面的。2、

加法、减法、乘法和除法统称为四则运算。3、

有关0的运算:1、一个数加上0得原数。

2、任何一个数乘0得0。

3、0不能做除数。0除以一个非0的数等于0。0÷0得不到固定的商;5÷0得不到商.(二)位置与方向:1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)

3、简单路线图的绘制。(三)运算定律及简便运算:1、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)3、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。

a

×

b

=

b

×

a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a

×

b)×c

=a

×

(

b

×

c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。

a÷b÷c

=a÷(b×c)5、有关简算的拓展:

易错的情况:0.6+0.4-0.6+0.4

38×99+99(四)

小数的意义和性质:1、分母是10、100、1000……的分数可以用小数来表示。2、小数是十进制分数的另一种表现形式。3、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……4、每相邻两个计数单位间的进率是10。5、小数的读写法:读法:整数部分按照整数读法来读,小数部分要顺次读出每一个数。

写法:整数部分按照整数的写法来写,整数部分是0就写0,小数部分依次写出每一个数。6.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。7.小数大小比较:先比较整数部分,整数部分相同比较十分位,十分位相同比较百分位,……8.小数点位置移动引起小数大小变化规律:小数点向右:移动一位,小数就扩大到原数的10倍;

移动两位,小数就扩大到原数的100倍;

移动三位,小数就扩大到原数的1000倍;

……小数点向左:移动一位,小数就缩小10倍,(小数就缩小为原数的);

移动两位,小数就缩小100倍,(小数就缩小为原数的);

移动三位,小数就缩小1000倍,(小数就缩小为原数的);

……9.名数的改写:1吨30千克+800克=(

)吨

长度单位:千米————米

————分米

————

厘米

面积单位:平方千米———公顷———平方米————平方分米———平方厘米

质量单位:吨————千克————克10、求小数的近似数(四舍五入):(保留两位小数与精确到百分位的提法)保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位,取近似数时,小数末尾的0不能去掉。大数的改写。先改写,再求近似数。注意:带上单位。(五)

三角形:1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。重点:三角形高的画法。3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。2、边的特性:任意两边之和大于第三边。4、三角形的分类:按照角大小来分:锐角三角形,直角三角形,钝角三角形。按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)5、三角形的内角和等于180度。有关度数的计算以及格式。6、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。7、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。(六)小数的加减法:1、

计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。2、

竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。3、

整数的四则运算顺序和运算定律在小数中同样适用。(简算)(七)统计:折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。(八)数学广角:植树问题。

间隔数=总长度÷间隔长度

情况分类:1、两端都植:棵数=间隔数+1

2、一端植,一端不植:棵数=间隔数

3、两端都不植:棵数=间隔数-1

4、封闭:棵数=间隔数五年级上复习内容:小数加减法的计算方法:计算小数加减法,要先把小数点对齐,然后按照整数加减法的法则进行计算。第一单元《小数乘法》知识点1、小数乘整数意义:求几个相同加数的和的简便运算。如:3.6×5表示5个3.6的和是多少或者3.6的5倍是多少。小数乘小数的意义:就是求这个数的几分之几是多少。如:2.6×0.4就是求2.4的十分之四是多少。8.5×3.4就是求8.5的3.4倍是多少。2、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;乘得积的小数位数不够时,要在前面用0补足,再点小数点;小数末尾有0的要去掉。3、一个数(0除外)乘大于1的数,积比原来的数大,一个数(0除外)乘小于1的数,积比原来的数小。3、小数四则运算顺序跟整数是一样的:即有括号的要先算括号里的,没有括号的要先算乘除法,后算加减法,同级运算按照从左往右的顺序计算。4、整数乘法的交换律、结合律、分配律,对于小数乘法也适用。第二单元《小数除法》知识点1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。小数除法的计算方法:计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。2、取近似数的方法:

取近似数的方法有三种,①四舍五入法②进一法③去尾法

一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。

取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。4、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.3636……

1.587587……另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12.

0.46

5、有限小数:小数部分的位数是有限的小数,叫做有限小数。6、无限小数:小数部分的位数是无限的小数,叫做无限小数。第三单元《观察物体》知识点1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。第四单元《简易方程》知识点1、用字母表运算定律。加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

乘法交换律:a×b=b×a

乘法结合律:a×b×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c2、用字母表示计算公式。长方形的周长公式:c=(a+b)×2

长方形的面积公式:s=ab

正方形的周长公式:c=4a

正方形的面积公式:s=a2

3、x2读作:x的平方,表示:两个x相乘。

2x表示:两个x相加,或者是2乘x。4、①含有未知数的等式称为方程。②使方程左右两边相等的未知数的值叫做方程的解。③求方程的解的过程叫做解方程。5、把下面的数量关系补充完整。路程=(速度)×(时间)

速度=(路程)÷(时间)

时间=(路程)÷(速度)总价=(单价)×(数量)

单价=(总价)÷(数量)

数量=(总价)÷(单价)总产量=(单产量)×(数量)单产量=(总产量)÷(数量)数量=(总产量)÷(单价)工作总量=(工作效率)×(工作时间)工作效率=(工作总量)÷(工作时间)工作时间=(工作总量)÷(工作效率)大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量×倍数=几倍量几倍量÷倍数=一倍量

几倍量÷一倍量=倍数被减数=减数+差

减数=被减数-差

加数=和-另一个加数被除数=除数×商

除数=被除数÷商

因数=积÷另一个因数

第五单元《多边形面积》知识点1、长方形面积=长×宽

字母公式:s=ab

长方形周长=(长+宽)×2

字母公式:c=(a+b)×22、正方形面积=边长×边长

字母公式:s=a2或者s=a×a

正方形周长=边长×4

字母公式:c=4a或者c=a×43、平行四边形面积=底×高

字母公式:s=ah4、三角形面积=底×高÷2

字母公式:s=ah÷25、梯形面积=(上底+下底)×高÷2

字母公式:s=(a+b)×h÷26、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷27、等底等高的平行四边形面积相等。等底等高的三角形面积相等。等底等高的三角形和平行四边形面积关系:三角形的面积是平行四边形面积的一半,平行四边形的面积是三角形面积的2倍。8、组合图形:转化成已学的简单图形,通过加、减进行计算。第六单元《统计与可能性》知识点1、平均数=总数量÷总份数2、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。五年级下复习内容:一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积。5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。8、长方体的体积=长×宽×高用字母表示:V=abh长=体积÷(宽×高)宽=体积÷(长×高)高=体积÷(长×宽)正方体的体积=棱长×棱长×棱长用字母表示:V=a×a×a9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为100010、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率。12、容积:容器所能容纳物体的体积。13、容积单位:升和毫升(L和ml)1L=1000ml1L=1000立方厘米1ml=1立方厘米14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。四、分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b=(b≠0)。4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。9、最简分数:分子和分母只有公因数1的分数叫做最简分数。10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。13、特殊情况下的最大公因数和最小公倍数:①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。五、分数的加法和减法1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。六、打电话1、逐个法:所需时间最多;2、分组法:相对节约时间;3、同时进行法:最节约时间。六年级上复习内容:一、位置在学习位置时用数对确定点的位置,起初确定一点位置是根据规定和约定。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。这部分知识渗透数形结合的数学思想,可在方格纸上画一画。二、分数乘法分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。2、分数乘分数是求一个数的几分之几是多少。例:一时刷一面墙的1/4,1/5时刷一面墙的多少?求1/5的1/4是多少?解决的方法一:用一张纸表示一面墙,折一折,这就是利用了数形结合的数学思想。解决的方法二:工作效率成*工作时间=工作总量分数乘法的算法:1、分数与整数相乘,分子与整数相乘的积做分子,分母不变。2、分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。分数的化简:分子、分母同时除以它们的最大公因数。关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。约分的书写格式:把两个可以约分的数先划去,分别在它们的上下方写出约分后的数。分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。倒数的意义:乘积为1的两个数互为倒数。特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。求倒数的方法:1、求分数的倒数是交换分子分母的位置。2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。1的倒数是它本身。因为1*1=10没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)三、分数除法分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。分数除法的基本性质:强调0除外比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。注:10/2=5/1,表示比读5比1,19:2=5,是比值,比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。化简比:1、用比的前项和后项同时除以它们的最大公约数。2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。3、两个小数的比,向右移动小数点的位置。也是先化成整数比。在分数乘法的应用部分,提倡画线段图分析数量关系。在图上要标出已知量和所求问题。关键是找到单位“1”,画线段图,主要是求一个数的几分之几是多少?应用:求一个数比另一个数多几这类题:先求出(或少)几,再和单位“1”(即标准量作比较)。(大数-小数)/比较标准(即单位“1”)画线段图:(1)标出已知和未知。(2)分析数量关系。(3)找等量关系。(4)列方程。注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。连比如:3:4:5读作:3比4比5无论是折纸实验,还是画线段图,实际上都是图形语言揭示分数除法计算过程的几何意义。在学习这些知识,分数乘除法,比的知识,运用了类比的数学方法(相似与变式)。另外数据简单,降低探究、理解算理难度,便于口算,整个推理过程处于学生思维能力的最近发展区内。比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。黄金分割点,最美的点。AC:AB=CB:AC主持站在舞台上,他站在舞台上的黄金分割点处效果最好。常用来做判断的:一个数除以小于1的数,商大于被除数。一个数除以1,商等于被除数。一个数除以大于1的数,商小于被除数。四、圆圆的面积推导,用逐渐逼近的转化思想。把一个圆等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。化新为旧,化未知为已知,化复杂为简单,化抽象为具体。圆的基本特征:易滚动,外型美观。面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。本题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。已知长方形和正方形的面积是1225cm2,通过分解质因数1225=5*7*5*7(1225=35*35=49*25=1225*1),可得正方形的边长是35m,则周长是140m。因为长方形面积1225平方米=1225米*1米,即长方形的长若是1225m,宽是1m,;则周长是2452m;1225平方米=49米*25米,那么长若是49m,宽是25m,则周长是148m。可见,在面积一定的情况下,长方形的长和宽的长度越接近,则周长越短,但都大于正方形的周长。本题中圆的面积为1256cm2>1225cm2,但计算出圆的周长是125.6m<140m,说明在面积相等的情况下,圆的周长<正方形的周长<长方形的周长。周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。圆心确定圆的位置,半径确定圆的大小。求圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆周长。发现一般规律,就是圆周与直径的比是固定数,Π。在判断时,圆周长与直径的比是Π倍,不选3.14倍。确定起跑线,跑道长度相同,那么各圆长度决定于各自的两个半圆,就是直径的长度,因为,圆周长=圆周率*直径,圆周率为固定值。每条跑到宽1.25米,故而相邻两条跑道,外圈跑道的直径等于里圈跑道直径加2.5米。据此确定起跑位置。圆的内接正几边形边数越多,周长越接近圆周长。五、百分数百分数在生活中应用广泛,所涉及问题基本和分数问题相同,但是要乘100%,%号的写法两个0要小写,不要与百分数前面的数混淆。百分数与小数分数互化。百分数化小数,去掉百分号,同时把小数点向左移动两位就可以了。小数化成百分数,只要把小数点向右移动两位,同时添上百分号。小数化成分数,移动小数点位置变为整数做分子,分母变成10、100、1000……,再化简。分数化成小数,用除法,除不尽的保留两位小数。分数化成百分数:1、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。2、利用分数除法把分数化成小数,再化成百分数。除不尽的情况结果保留三位小数三位小数,因此分子除以分母的商要算到小数第四位,四舍五入后,近似商取三位数。百分数分子保留一位小数。这种方法适用范围广。百分数化成分数,写成分数形式,再约分。分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。六、统计条形统计图可以知道每个数量的多少。折现统计图可以知数量的增减,扇形统计图可以知道部分和总量的关系。七、数学广角研究中国古代的鸡兔同笼问题。1、用表格方式解决有局限性,数目必须小,例:头数鸡(只)兔(只)腿数351343523335332……(逐一列表法、腿数少小幅度跳跃、腿数多大幅度跳跃、跳跃逐一相结合、取中列表)2、用假设法解决(1)假如都是兔(2)假如都是鸡(3)假如它们各抬起一条腿(4)假如兔子抬起两条前腿(5)这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。3、用代数方法解(一般规律)……冰水混合物所占比的问题基本概念第一章数和数的运算一概念(一)整数1整数的意义自然数和0都是整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。如果两个数是互质数,它们的最大公因数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111……0.5656……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222……0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777……简写作0.5302302……简写作。(三)分数1分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。二方法(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。4.大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。2.比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。(三)数的互化1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2.分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1.把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。4.成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1.小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2.小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3.小数点向左移或者向右移位数不够时,要用“0"补足位。(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。(五)分数与除法的关系1.被除数÷除数=被除数/除数2.因为零不能作除数,所以分数的分母不能为零。3.被除数相当于分子,除数相当于分母。四运算的意义(一)整数四则运算1整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。加数+加数=和一个加数=和-另一个加数2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。加法和减法互为逆运算。3整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。一个因数×一个因数=积一个因数=积÷另一个因数4整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。乘法和除法互为逆运算。在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。被除数÷除数=商除数=被除数÷商被除数=商×除数(二)小数四则运算1.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.3.小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。4.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。5.乘方:求几个相同因数的积的运算叫做乘方。例如3×3=32(三)分数四则运算1.分数加法:分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2.分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。3.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。4.乘积是1的两个数叫做互为倒数。5.分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。(四)运算定律1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。5.乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。6.减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。(五)运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。3.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。6.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。7.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。8.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。9.异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。11.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。12.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(六)运算顺序1.小数四则运算的运算顺序和整数四则运算顺序相同。2.分数四则运算的运算顺序和整数四则运算顺序相同。3.没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。4.有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。5.第一级运算:加法和减法叫做第一级运算。6.第二级运算:乘法和除法叫做第二级运算。五应用(一)整数和小数的应用1简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。(2)解题步骤:a审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。2复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。(2)含有三个已知条件的两步计算的应用题。求比两个数的和多(少)几个数的应用题。比较两数差与倍数关系的应用题。(3)含有两个已知条件的两步计算的应用题。已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。(4)解答连乘连除应用题。(5)解答三步计算的应用题。(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。d答案:根据计算的结果,先口答,逐步过渡到笔答。(3)解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。(4)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。(5)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。(6)解答除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。C求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。d已知一个数的几倍是多少,求这个数的应用题。(7)常见的数量关系:总价=单价×数量路程=速度×时间工作总量=工作时间×工效总产量=单产量×数量3典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。(1)平均数问题:平均数是等分除法的发展。解题关键:在于确定总数量和与之相对应的总份数。算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。加权平均数:已知两个以上若干份的平均数,求总平均数是多少。数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。例:一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。求这辆车的平均速度。分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“1”,则汽车行驶的总路程为“2”,从甲地到乙地的速度为100,所用的时间为,汽车从乙地到甲地速度为60千米,所用的时间是,汽车共行的时间为+=,汽车的平均速度为2÷=75(千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。6930÷(4774÷31)=45(天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量单位数量×单位个数÷另一个单位数量=另一个单位数量。例修一条水渠,原计划每天修800米,6天修完。实际4天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。800×6÷4=1200(米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。解题规律:(和+差)÷2=大数大数-差=小数(和-差)÷2=小数和-小数=大数例某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲班人数少12人,求原来甲班和乙班各有多少人?分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即94-12,由此得到现在的乙班是(94-12)÷2=41(人),乙班在调出46人之前应该为41+46=87(人),甲班为94-87=7(人)(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。列式为(115-7)÷(5+1)=18(辆),18×5+7=97(辆)(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。解题规律:两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数。例甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3倍,甲乙两绳所剩长度各多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(63-29)÷(3-1)=17(米)…乙绳剩下的长度,17×3=51(米)…甲绳剩下的长度,29-17=12(米)…剪去的长度。(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。解题关键及规律:同时同地相背而行:路程=速度和×时间。同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。例甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米,乙每小时行9千米,甲几小时追上乙?分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。已知甲在乙的后面28千米(追击路程),28千米里包含着几个(16-9)千米,也就是追击所需要的时间。列式28÷(16-9)=4(小时)(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。船速:船在静水中航行的速度。水速:水流动的速度。顺水速度:船顺流航行的速度。逆水速度:船逆流航行的速度。顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。解题规律:船行速度=(顺水速度+逆流速度)÷2流水速度=(顺流速度逆流速度)÷2路程=顺流速度×顺流航行所需时间路程=逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水航行,回到甲地。逆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论