《备考指南 理科数学》课件-第8章 第2讲_第1页
《备考指南 理科数学》课件-第8章 第2讲_第2页
《备考指南 理科数学》课件-第8章 第2讲_第3页
《备考指南 理科数学》课件-第8章 第2讲_第4页
《备考指南 理科数学》课件-第8章 第2讲_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体几何第八章第2讲空间几何体的表面积与体积【考纲导学】了解球体、柱体、锥体、台体的表面积和体积计算公式.栏目导航01课前基础诊断03课后感悟提升02课堂考点突破04配套训练课前基础诊断11.圆柱、圆锥、圆台的侧面展开图及侧面积公式πrl

π(r+r′)l

2.空间几何体的表面积与体积4πR2

1.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为(

)1.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念.判断下面结论是否正确(请在括号中打“√”或“×”):(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(

)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(

)(3)锥体的体积等于底面面积与高之积.(

)(4)若一个棱长为2的正方体的各个顶点均在同一球的球面上,则此球的表面积为12π.(

)(5)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(

)×××√×课堂考点突破2空间几何体的表面积

(1)(2018年铁岭模拟)一个正三棱柱(底面是正三角形,高等于侧棱长)的三视图如图所示,这个正三棱柱的表面积是(

)【答案】(1)D

(2)B

【规律方法】(1)由三视图求相关几何体的表面积.给出三视图时,依据“正视图反映几何体的长和高,侧视图反映几何体的高和宽,俯视图反映几何体的长和宽”来确定表面积公式中涉及的基本量.(2)根据几何体的特征求表面积.①求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积;②对于组合体,要弄清它是由哪些简单几何体组成的,要注意“表面(和外界直接接触的面)”的定义,以确保不重复、不遗漏.【答案】(1)C

(2)A

空间几何体的体积【规律方法】空间几何体体积问题的三种类型及解题策略:(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.【跟踪训练】2.(1)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的(

)(2)(2018年延安模拟)如图,在边长为1的正方形组成的网格中,画出的是一个几何体的三视图,则该几何体的体积是(

)与球有关的接、切问题【考向分析】与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变.常见的考向:(1)正四面体的内切球与四棱锥的外接球;(2)直三棱柱的外接球;(3)正方体(长方体)的内切、外接球.【答案】C【答案】C【规律方法】“切”“接”问题处理的注意事项:(1)“切”的处理:首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理:抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.课后感悟提升32种方法——割补法与等积法(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到.利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.2个注意点——求空间几何体的表面积应注意两点(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.1.(2018年浙江)某几何体的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论