上海电力大学《人工智能与科技素养》2023-2024学年第二学期期末试卷_第1页
上海电力大学《人工智能与科技素养》2023-2024学年第二学期期末试卷_第2页
上海电力大学《人工智能与科技素养》2023-2024学年第二学期期末试卷_第3页
上海电力大学《人工智能与科技素养》2023-2024学年第二学期期末试卷_第4页
上海电力大学《人工智能与科技素养》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页上海电力大学

《人工智能与科技素养》2023-2024学年第二学期期末试卷题号一二三四总分得分一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的发展中,伦理和社会问题日益受到关注。假设一个城市正在考虑广泛部署人工智能监控系统,以下关于人工智能伦理的描述,正确的是:()A.只要人工智能系统能够提高安全性,就无需考虑其可能对个人隐私造成的侵犯B.在部署人工智能系统时,不需要考虑公平性和透明度,只要结果有效就行C.应该在开发和使用人工智能技术时,遵循伦理原则,制定相关法规和政策,以确保其有益和无害的应用D.人工智能的伦理问题是次要的,技术发展才是关键,伦理可以在后期考虑2、在人工智能的应用中,自动驾驶是一个具有挑战性的领域。假设一辆自动驾驶汽车需要在复杂的交通环境中做出安全、高效的驾驶决策。那么,以下关于自动驾驶中的人工智能技术,哪一项是不准确的?()A.需要依靠多种传感器获取环境信息,如摄像头、激光雷达等B.基于深度学习的目标检测算法可以准确识别道路上的行人和车辆C.自动驾驶系统一旦训练完成,就不需要再进行更新和改进D.决策算法需要考虑交通规则、道德伦理等多方面因素3、人工智能中的模型压缩技术对于在资源受限的设备上部署模型至关重要。假设要将一个大型的深度学习模型部署到移动设备上,同时保持一定的性能。以下哪种模型压缩方法在减少模型参数数量和计算量方面最为有效?()A.剪枝B.量化C.知识蒸馏D.以上方法综合运用4、假设要开发一个能够在虚拟环境中进行自主探索和学习的人工智能体,例如在游戏中不断提升能力,以下哪种学习机制和策略可能是关键的?()A.无监督学习B.有监督学习C.强化学习D.以上都是5、在人工智能的模型训练中,过拟合和欠拟合是常见的问题。假设正在训练一个用于预测房价的人工智能模型,以下关于过拟合和欠拟合的描述,正确的是:()A.过拟合是指模型在训练数据上表现差,在新数据上表现好;欠拟合则相反B.模型越复杂,越不容易出现过拟合问题,因此应该尽量增加模型的复杂度C.正则化技术可以有效地防止过拟合,而增加训练数据量可以解决欠拟合问题D.过拟合和欠拟合只与模型的架构有关,与数据和训练过程无关6、在人工智能的发展中,伦理原则和规范的制定至关重要。以下关于人工智能伦理原则的叙述,不正确的是()A.应遵循公平、公正、透明和可解释的原则,确保人工智能系统的决策不带有偏见B.要保障人类的安全和福祉,避免人工智能对人类造成潜在的危害C.知识产权和隐私保护在人工智能伦理中不重要,可以忽略D.鼓励公众参与和监督人工智能的发展,促进社会对人工智能的信任7、人工智能中的异常检测在许多领域都有重要应用,如网络安全、金融欺诈检测等。假设我们要在金融交易数据中检测异常行为,以下关于异常检测的方法,哪一项是不准确的?()A.基于统计模型的方法B.基于聚类的方法C.基于规则的方法D.异常检测不需要考虑数据的分布特征8、图像识别是人工智能的常见应用之一。假设要开发一个能够准确识别各种动物的图像识别系统,以下关于图像识别技术的描述,正确的是:()A.仅仅依靠像素级的特征提取就能实现高精度的图像识别,无需考虑对象的形状和结构B.深度学习模型在图像识别中总是能够自动学习到最有效的特征,无需人工干预特征设计C.对于复杂的图像场景,传统的图像识别方法比基于深度学习的方法更具优势D.图像识别系统的性能不受图像质量、光照条件和拍摄角度等因素的影响9、在一个利用人工智能进行能源管理的系统中,例如优化建筑物的能源消耗或电网的调度,以下哪个方面的考虑可能是至关重要的?()A.实时数据采集和处理B.精准的预测模型C.多目标优化策略D.以上都是10、在人工智能的发展中,硬件的支持对于提高计算效率和性能至关重要。假设要训练一个大规模的深度学习模型,需要快速处理海量的数据。以下哪种硬件架构或设备在加速模型训练方面具有显著的优势?()A.CPUB.GPUC.TPUD.FPGA11、人工智能中的优化算法对于模型的训练和性能提升起着关键作用。以下关于优化算法的叙述,不正确的是()A.常见的优化算法包括随机梯度下降(SGD)、Adagrad、Adadelta等B.不同的优化算法在收敛速度、稳定性和对超参数的敏感性方面有所不同C.优化算法的选择只取决于模型的架构,与数据特点无关D.可以通过调整优化算法的参数来提高模型的训练效果12、人工智能中的强化学习可以应用于机器人控制。假设一个机器人需要通过强化学习学会在复杂环境中行走和避障,以下关于机器人强化学习的描述,正确的是:()A.机器人可以在没有任何先验知识的情况下,通过随机探索快速学会有效的行走和避障策略B.强化学习中的奖励设置对机器人的学习效果没有关键影响,只要有奖励就行C.结合机器人的物理模型和环境模型,可以为强化学习提供更好的先验知识,加速学习过程D.机器人的强化学习只适用于简单的环境,对于复杂多变的真实环境无法应用13、在人工智能的模型训练中,过拟合是一个常见的问题。假设正在训练一个用于手写数字识别的神经网络,以下关于防止过拟合的方法,哪一项是最有效的?()A.增加训练数据的数量B.减少神经网络的层数C.使用更复杂的激活函数D.不进行任何处理,认为过拟合不会影响模型性能14、强化学习是人工智能的一个重要分支,常用于训练智能体在环境中做出最优决策。假设一个智能体正在通过强化学习算法学习玩一款复杂的游戏,以下关于强化学习过程的描述,正确的是:()A.智能体在学习过程中只需要随机尝试不同的动作,就能快速找到最优策略B.奖励函数的设计对智能体的学习效果没有显著影响,只要有奖励就行C.智能体能够通过与环境的不断交互和试错,逐渐优化自己的策略以获得更高的累计奖励D.强化学习不需要考虑环境的动态变化和不确定性,只关注当前的动作和奖励15、人工智能在工业生产中的质量检测环节具有应用价值。假设一个工厂要利用人工智能检测产品缺陷,以下关于其应用的描述,哪一项是不准确的?()A.通过图像分析和机器学习算法,自动识别产品表面的缺陷B.可以对大量的检测数据进行学习,不断提高缺陷检测的准确率C.人工智能检测系统能够完全取代人工检测,不需要人工复检D.结合深度学习模型和传统图像处理技术,提高检测的可靠性16、在人工智能的农业应用中,精准农业可以通过传感器和数据分析实现对农作物的精细化管理。假设要根据土壤湿度和气象数据决定灌溉量,以下哪个技术环节是最关键的?()A.数据的采集和传输B.数据分析和建模C.灌溉设备的控制D.传感器的校准17、假设要开发一个能够在复杂的商业环境中进行智能决策支持的人工智能系统,例如投资决策或市场策略制定,以下哪种技术和知识的融合可能是必要的?()A.数据分析和领域专家知识B.机器学习算法和经济学原理C.深度学习模型和管理学理论D.以上都是18、在人工智能的研究中,模型的评估指标对于衡量模型性能非常重要。假设要评估一个图像分类模型的性能。以下关于评估指标的描述,哪一项是不准确的?()A.准确率是常用的评估指标之一,表示正确分类的样本比例B.召回率衡量了模型能够正确识别正例的能力C.F1分数综合考虑了准确率和召回率,是一个更全面的评估指标D.只要模型的准确率高,就说明模型在实际应用中一定表现良好19、人工智能中的自动规划和调度问题在许多领域都有应用,如生产制造、物流配送等。假设一个工厂要安排生产任务,需要考虑机器的可用性、订单的优先级和交货日期等约束条件。以下哪种自动规划算法在处理这种复杂的约束满足问题上最为高效?()A.A*算法B.遗传算法C.模拟退火算法D.蚁群算法20、在人工智能的目标检测任务中,假设要在图像中准确检测出多个不同类别的物体,以下关于目标检测算法的描述,正确的是:()A.基于传统特征的目标检测算法在复杂场景下的性能优于深度学习算法B.深度学习的目标检测算法,如FasterR-CNN,能够实现高精度的检测C.目标检测算法的性能只取决于模型的复杂度,与训练数据无关D.所有的目标检测算法都能够实时处理视频中的目标检测任务二、简答题(本大题共5个小题,共25分)1、(本题5分)简述人工智能在智能物流资源分配中的策略。2、(本题5分)简述过拟合和欠拟合的概念及解决方法。3、(本题5分)说明注意力机制在深度学习中的重要性。4、(本题5分)简述K-Means聚类算法的步骤和优缺点。5、(本题5分)简述人工智能在考古和文物保护中的应用。三、案例分析题(本大题共5个小题,共25分)1、(本题5分)考察某社交平台运用人工智能进行内容审核的案例,分析其准确性和公正性。2、(本题5分)考察一个基于人工智能的智能安防系统,讨论其在视频监控中的人物识别、行为分析和预警功能。3、(本题5分)以某智能珠宝鉴定系统为例,研究人工智能在宝石品质评估和真伪鉴别中的作用。4、(本题5分)以某智能传统民间艺术作品数字化保护系统为例,探讨人工智能在数据采集和存储方面的应用。5、(本题5分)考察一个基于人工智能的智能绘画色彩搭配建议系统,讨论其如何提供合适的色彩搭配方案。四、操作题(本大题共3个小题,共30分)1、(本题10分)利用Python的TensorFlow框架,构建一个基于生成对抗网络(GAN)的文本生成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论