2025年山东省冬季高中学高三下学期第三次月考试卷数学试题试卷含解析_第1页
2025年山东省冬季高中学高三下学期第三次月考试卷数学试题试卷含解析_第2页
2025年山东省冬季高中学高三下学期第三次月考试卷数学试题试卷含解析_第3页
2025年山东省冬季高中学高三下学期第三次月考试卷数学试题试卷含解析_第4页
2025年山东省冬季高中学高三下学期第三次月考试卷数学试题试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年山东省冬季高中学高三下学期第三次月考试卷数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知单位向量,的夹角为,若向量,,且,则()A.2 B.2 C.4 D.62.如图,在正四棱柱中,,分别为的中点,异面直线与所成角的余弦值为,则()A.直线与直线异面,且 B.直线与直线共面,且C.直线与直线异面,且 D.直线与直线共面,且3.若直线与圆相交所得弦长为,则()A.1 B.2 C. D.34.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③ B.①② C.①③ D.②③5.若复数是纯虚数,则实数的值为()A.或 B. C. D.或6.已知命题,,则是()A., B.,.C., D.,.7.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是()A. B. C. D.8.已知集合,集合,那么等于()A. B. C. D.9.已知函数若函数在上零点最多,则实数的取值范围是()A. B. C. D.10.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.505011.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-312.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,满足,,且已知向量,的夹角为,,则的最小值是__.14.若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为______.15.已知复数满足(为虚数单位),则复数的实部为____________.16.已知函数有且只有一个零点,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.18.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.19.(12分)设,函数,其中为自然对数的底数.(1)设函数.①若,试判断函数与的图像在区间上是否有交点;②求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.20.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.21.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.22.(10分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.2.B【解析】

连接,,,,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,,,,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,,,由余弦定理,得.故选:B本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.3.A【解析】

将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A本题考查了根据垂径定理求解直线中参数的方法,属于基础题.4.B【解析】

由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所.则直线与直线的斜率乘积为.所以①正确.将代入抛物线的方程可得,,从而,,根据抛物线的对称性可知,,两点关于轴对称,所以直线轴.所以②正确.如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以③不正确.故选:B.本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.5.C【解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.考点:纯虚数6.B【解析】

根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:本题考查含量词的命题的否定,属于基础题.7.B【解析】

试题分析:设在直线上的投影分别是,则,,又是中点,所以,则,在中,所以,即,所以,故选B.考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系.8.A【解析】

求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.9.D【解析】

将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.10.C【解析】

因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.11.D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.12.A【解析】

根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

求的最小值可以转化为求以AB为直径的圆到点O的最小距离,由此即可得到本题答案.【详解】如图所示,设,由题,得,又,所以,则点C在以AB为直径的圆上,取AB的中点为M,则,设以AB为直径的圆与线段OM的交点为E,则的最小值是,因为,又,所以的最小值是.故答案为:本题主要考查向量的综合应用问题,涉及到圆的相关知识与余弦定理,考查学生的分析问题和解决问题的能力,体现了数形结合的数学思想.14.【解析】

二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d,则,即.∵点Q到底面的距离与到点P的距离之比为正常数k,∴,则,∵动点Q的轨迹是抛物线,∴,即则.∴二面角的平面角的余弦值为解得:().故答案为:.本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.15.【解析】

利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答案为:2本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.16.【解析】

当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.【详解】当时,,故不是函数的零点;当时,即,令,,,当时,;当时,,的单调减区间为,增区间为,又,可作出的草图,如图:则要使有唯一实数根,则.故答案为:.本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)三个零点【解析】

(1)由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,,时,递减,时,,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时,,一方面,,且在递减,所以在区间有一个零点.另一方面,,设,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为,,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.下面证明:,由得,即,由得,令,则,①当时,递减,则,而,故;②当时,递减,则,而,故;一方面,因为,又,且在递增,所以在上有一个零点,即在上有一个零点.另一方面,根据得,则有:,又,且在递增,故在上有一个零点,故在上有一个零点.又,故有三个零点.本题考查函数的零点,导数的综合应用.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.18.(1)证明见解析(2)【解析】

(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【详解】(1)证明:连接交于,连接,,≌,且,面面,面,(2)取中点,连,.由,面面面,又由,以分别为轴建立如图所示空间直角坐标系,设,则,,,,,,为面的一个法向量,设面的法向量为,依题意,即,令,解得,所以,平面的法向量,,又因二面角为锐角,故二面角的余弦值为.本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意中位线和向量法的合理运用,属于基础题.19.(1)①函数与的图象在区间上有交点;②证明见解析;(2)且;【解析】

(1)①令,结合函数零点的判定定理判断即可;②设切点横坐标为,求出切线方程,得到,根据函数的单调性判断即可;(2)求出的解析式,通过讨论的范围,求出函数的单调区间,确定的范围即可.【详解】解:(1)①当时,函数,令,,则,,故,又函数在区间上的图象是不间断曲线,故函数在区间上有零点,故函数与的图象在区间上有交点;②证明:假设存在,使得直线是曲线的切线,切点横坐标为,且,则切线在点切线方程为,即,从而,且,消去,得,故满足等式,令,所以,故函数在和上单调递增,又函数在时,故方程有唯一解,又,故不存在,即证;(2)由得,,,令,则,,当时,递减,故当时,,递增,当时,,递减,故在处取得极大值,不合题意;时,则在递减,在,递增,①当时,,故在递减,可得当时,,当时,,,易证,令,,令,故,则,故在递增,则,即时,,故在,内存在,使得,故在,上递减,在,递增,故在处取得极小值.②由(1)知,,故在递减,在递增,故时,,递增,不合题意;③当时,,当,时,,递减,当时,,递增,故在处取极小值,符合题意,综上,实数的范围是且.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.20.(1)极小值点为,极小值为,无极大值;(2)证明见解析【解析】

先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴本题考查了利用导数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论