2024-2025学年吉林省三校联考高三下学期二轮阶段性检测试题数学试题含解析_第1页
2024-2025学年吉林省三校联考高三下学期二轮阶段性检测试题数学试题含解析_第2页
2024-2025学年吉林省三校联考高三下学期二轮阶段性检测试题数学试题含解析_第3页
2024-2025学年吉林省三校联考高三下学期二轮阶段性检测试题数学试题含解析_第4页
2024-2025学年吉林省三校联考高三下学期二轮阶段性检测试题数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年吉林省三校联考高三下学期二轮阶段性检测试题数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知变量,满足不等式组,则的最小值为()A. B. C. D.2.已知且,函数,若,则()A.2 B. C. D.3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是()A.甲 B.乙 C.丙 D.丁4.设非零向量,,,满足,,且与的夹角为,则“”是“”的().A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既不充分也不必要条件5.已知复数,为的共轭复数,则()A. B. C. D.6.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.58.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则()A. B. C. D.9.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离10.已知x,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件11.下列判断错误的是()A.若随机变量服从正态分布,则B.已知直线平面,直线平面,则“”是“”的充分不必要条件C.若随机变量服从二项分布:,则D.是的充分不必要条件12.设,,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.14.记等差数列和的前项和分别为和,若,则______.15.已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为________.16.如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.18.(12分)设函数.(1)当时,求不等式的解集;(2)当时,求实数的取值范围.19.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.20.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.21.(12分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.22.(10分)已知函数,其中,为自然对数的底数.(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.2.C【解析】

根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,∴,则,则.即.故选:C.本题考查分段函数的应用,由分段函数解析式求自变量.3.D【解析】

根据演绎推理进行判断.【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.故选:D.本题考查演绎推理,掌握演绎推理的定义是解题基础.4.C【解析】

利用数量积的定义可得,即可判断出结论.【详解】解:,,,解得,,,解得,“”是“”的充分必要条件.故选:C.本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.5.C【解析】

求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C本题考查复数的代数形式的四则运算,共轭复数,属于基础题.6.C【解析】

根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,∴.又时函数值最大,所以.又,∴,从而,,只需将的图象向左平移个单位即可得到的图象,故选C.已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.7.A【解析】

根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.8.C【解析】

求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.故选:C本小题主要考查抛物线的弦长的求法,属于基础题.9.B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r10.D【解析】

,不能得到,成立也不能推出,即可得到答案.【详解】因为x,,当时,不妨取,,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D本题主要考查了充分条件,必要条件的判定,属于容易题.11.D【解析】

根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布:,则,故选项正确,不符合题意;对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.12.D【解析】

利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.本题考查了平面向量数量积的性质及其运算,属中档题.14.【解析】

结合等差数列的前项和公式,可得,求解即可.【详解】由题意,,,因为,所以.故答案为:.本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.15.【解析】

根据组合数得出所有情况数及两个球颜色不相同的情况数,让两个球颜色不相同的情况数除以总情况数即为所求的概率.【详解】从袋中任意地同时摸出两个球共种情况,其中有种情况是两个球颜色不相同;故其概率是故答案为:.本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组合数计算公式,考查了分析能力和计算能力,属于基础题.16.(或写成)【解析】试题分析:设,取中点则,因此,所以,因为在单调递增,最大值为所以单调增区间是,最大值为考点:函数最值,函数单调区间三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;(Ⅱ)取的中点,连接、,以、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【详解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中点,连接、,是正方形,易知、、两两垂直,以点为坐标原点,以、、所在直线分别为、、轴建立如图所示的空间直角坐标系,在中,,,,、、、,设平面的一个法向量,,,由,得,令,则,,.设平面的一个法向量,,,由,得,取,得,,得.,二面角为钝二面角,二面角的余弦值为.本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.18.(1)(2)当时,的取值范围为;当时,的取值范围为.【解析】

(1)当时,分类讨论把不等式化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解.【详解】(1)当时,,不等式可化为或或,解得不等式的解集为.(2)由绝对值的三角不等式,可得,当且仅当时,取“”,所以当时,的取值范围为;当时,的取值范围为.本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.19.(1)证明见解析(2)【解析】

(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,,,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.20.(1)见解析;(2)见解析【解析】

(1)根据,分别是,的中点,即可证明,从而可证平面;(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证.【详解】(1)∵,分别是,的中点∴∵平面,平面∴平面.(2)∵为正三角形,且D是的中点∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题.21.(1)证明见解析(2)【解析】

(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角.【详解】证明:(1)因为平面,平面,所以.因为四边形是菱形,所以.又因为,平面,平面,所以平面.解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,因为与平面所成角为,即,所以又,所以,所以所以设平面的一个法向量,则令,则.因为平面,所以为平面的一个法向量,且所以,.所以二面角的正弦值为.本题考查线面垂直的判定定理和性质定理,考查用向量法求二面角.立体几何中求空间角常常

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论