黑龙江省明水县达标名校2024届中考数学对点突破模拟试卷含解析_第1页
黑龙江省明水县达标名校2024届中考数学对点突破模拟试卷含解析_第2页
黑龙江省明水县达标名校2024届中考数学对点突破模拟试卷含解析_第3页
黑龙江省明水县达标名校2024届中考数学对点突破模拟试卷含解析_第4页
黑龙江省明水县达标名校2024届中考数学对点突破模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省明水县达标名校2024届中考数学对点突破模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个根是02.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是()A. B.C. D.3.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.24.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.5.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.6.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4B.﹣9C.﹣4D.+97.二次函数的图象如图所示,则下列各式中错误的是()A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=08.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A. B. C. D.9.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A. B. C. D.10.一、单选题如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.2二、填空题(共7小题,每小题3分,满分21分)11.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____.(写出一个答案即可)12.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.13.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.14.若点(,1)与(﹣2,b)关于原点对称,则=_______.15.若a、b为实数,且b=+4,则a+b=_____.16.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.17.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.19.(5分)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.20.(8分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).21.(10分)如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC.求证:△BDA∽△CED.22.(10分)先化简,再求值:(m+2﹣)•,其中m=﹣.23.(12分)化简,再求值:24.(14分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.【详解】∵一次函数y=kx+b的图像经过第一、三、四象限∴k>0,b<0∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.【点睛】根的判别式2、A【解析】

根据平行线分线段成比例定理逐项分析即可.【详解】A.∵,∴,,∴,故A正确;B.∵,∴,故B不正确;C.∵,∴,故C不正确;D.∵,∴,故D不正确;故选A.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.3、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.4、D【解析】

根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.6、B【解析】

收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.7、B【解析】

根据二次函数的图象与性质逐一判断即可.【详解】解:由图象可知抛物线开口向上,∴,∵对称轴为,∴,∴,∴,故D正确,又∵抛物线与y轴交于y轴的负半轴,∴,∴,故A正确;当x=1时,,即,故B错误;当x=-1时,即,∴,故C正确,故答案为:B.【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.8、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故选C.点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.9、C【解析】试题分析:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合.故选C.考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.10、B【解析】

根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.二、填空题(共7小题,每小题3分,满分21分)11、答案不唯一,如:AD【解析】

根据勾股定理求出,根据无理数的估算方法解答即可.【详解】由勾股定理得:,.故答案为答案不唯一,如:AD.【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.12、或1【解析】

图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,图2,当∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【详解】请在此输入详解!13、1.【解析】

先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.【详解】对称轴为∵a=﹣1<0,∴当x>1时,y随x的增大而减小,∴当x=2时,二次函数y=﹣(x﹣1)2+2的最大值为1,故答案为:1.【点睛】本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.14、.【解析】

∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.考点:关于原点对称的点的坐标.15、5或1【解析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a=1,或a=﹣1,b=4,当a=1时,a+b=1+4=5,当a=﹣1时,a+b=﹣1+4=1,故答案为5或1.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.16、k>-且k≠1【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.17、﹣4.【解析】

作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【详解】解:作AN⊥x轴于N,如图所示:∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,∴可设A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案为﹣4.【点睛】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】

(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.19、(1)A(-1,0),B(0,1),D(1,0)(2)一次函数的解析式为反比例函数的解析式为【解析】解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0)。(2)∵点A、B在一次函数(k≠0)的图象上,∴,解得。∴一次函数的解析式为。∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2)。又∵点C在反比例函数(m≠0)的图象上,∴m=1×2=2。∴反比例函数的解析式为。(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。20、旗杆AB的高为(4+1)m.【解析】试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗杆AB的高为(4+1)m.21、证明见解析.【解析】

不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论