连云港卷-2025年中考第一次模拟考试数学试卷(含答案解析)_第1页
连云港卷-2025年中考第一次模拟考试数学试卷(含答案解析)_第2页
连云港卷-2025年中考第一次模拟考试数学试卷(含答案解析)_第3页
连云港卷-2025年中考第一次模拟考试数学试卷(含答案解析)_第4页
连云港卷-2025年中考第一次模拟考试数学试卷(含答案解析)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年中考第一次模拟考试数学试卷连云港卷注意事项:1.考试时间:120分钟,试卷满分:150分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.如果与3互为相反数,那么等于(

)A.5 B.1 C.-1 D.-52.截至北京时间2021年1月3日6时,我国执行首次火星探测任务的“天问一号”火星探测器已经在轨飞行约163天,飞行里程突破4亿公里,距离地球接近1.3亿公里,距离火星约830万公里,数据8300000用科学记数法表示为(

)A.8.3×105 B.8.3×106 C.83×105 D.0.83×1073.下列运算正确的是(

)A. B. C. D.4.下列图形,一定相似的是(

)A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个菱形5.有下列说法:(1)直径是弦;(2)经过三点一定可以作圆;(3)圆有无数条对称轴;(4)优弧的长度大于劣弧的长度.其中正确的有(

)A.1个 B.2个 C.3个 D.4个6.下列事件为必然事件的是(

)A.买彩票中奖 B.打开电视,正在播放《脱口秀》C.抛掷一枚硬币,正面向上 D.不在同一直线上的三个点确定一个圆7.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()

A.B.C.D.

8.已知抛物线:,将抛物线平移得到抛物线,若两条抛物线和关于直线对称,则下列平移方法中,正确的是(

)A.将抛物线向右平移3个单位 B.将抛物线向右平移6个单位C.将抛物线向左平移3个单位 D.将抛物线向左平移6个单位第Ⅱ卷二、填空题(本大题共8个小题,每小题3分,共24分)9.小聪有一本账册,如果小聪把收入元记为元,则支出元记为元.10.若式子在实数范围内有意义,则x的取值范围是.11.如图,点在同一条直线上,平分.若度,则为度;若为度,则∠GFB为度.

12.若关于x的一元二次方程无实数根,则k的取值范围是.13.某食用油生产厂要制造一种容积为5升(1升=1立方分米)的圆柱形油桶,油桶的底面面积s与桶高h的函数关系式为.14.的弦的长等于半径,那么弦所对的圆周角等于度.15.如图,等边中,,为上一点,且,为上一动点,则的最小值为.

16.已知,直线与轴相交于点,以为边作等边三角形,点在第一象限内,过点作轴的平行线与直线交于点,与轴交于点,以为边作等边三角形(点在点的上方),以同样的方式依次作等边三角形,等边三角形,则点的横坐标为.三、解答题(本大题共11个小题,共102分.解答应写出文字说明,证明过程或演算步骤)17.(6分)计算:.18.(6分)解下列不等式(组),并将其解集在数轴上表示出来.(1);(2).19.(6分)先化简,再求值:[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y,其中x=2019,y=.20.(8分)如图,点E是正方形的边上不同于C,D的任意一点,延长至点F,使.分别过点E,F作的垂线,相交于点G.(1)如图1,连接,、与有何关系?请说明理由.(2)如图2,连接.若.①当点E是的中点时,____________;②当点E不是的中点时,的值与①相比,有变化吗?请说明理由.21.(10分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个样品进行检测.过程如下:收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别频数165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间1220分析数据:车间平均数众数中位数方差甲车1乙车6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由。22.(10分)小军与小玲共同发明了一种“字母棋”游戏来比胜负.他们把分别标有A,B,C,D字母的5枚相同的棋子装入一个不透明的袋子中,其中棋子A、C、D各1枚,棋子B有2枚.“字母棋”的游戏规则如下:①游戏时,两人各摸一枚棋子进行比赛称为一轮比赛,先摸者摸出的棋子不放回;②棋子A胜棋子B、C,棋子B胜棋子C、D,棋子C胜棋子D,棋子D胜棋子A;③相同棋子不分胜负.(1)若小玲先摸,则小玲摸到棋子C的概率是________;(2)若小玲先摸,小军后摸,画树状图或列表,求小玲摸到棋子B,且小玲胜小军的概率.23.(10分)某单位计划购进A,B,C三种型号的礼品(每种型号至少1件),要求C型号礼品件数是A型号礼品件数的2倍,三种型号礼品的单价如下表:型号ABC单价(元/件)907075ABC数量(件)xy______费用(元)90x____________设购进x件A型号礼品,y件B型号礼品.(1)根据信息填表:(2)①若购买三种型号的礼品总数为100件,共花费7600元,则三种型号的礼品分别购进多少件?②若购买三种型号的礼品共花费5600元,且A,B两种型号的礼品件数之和超过礼品总数的一半,则三种型号的礼品总数为______件(直接写出答案).24.(10分)如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B.(1)求k的值;(2)把一次函数向下平移个单位长度后,与y轴交于点C,与x轴交于点D.①若,求的面积;②若四边形为平行四边形,求m的值.25.(12分)看图回答问题:(1)内角和为,小明为什么说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角加一起的那个外角的度数你能求出来吗?它是多少度?26.(12分)如图,直线与x轴交于点A,与y轴交于点C,抛物线过点A.(1)求出抛物线解析式的一般式;(2)抛物线上的动点D在一次函数的图象下方,求面积的最大值,并求出此时点D的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求的最小值.27.(12分)四边形是菱形,⊙O经过B、C、D三点(点O在上).(1)如图1,若AB是的切线,求的大小.(2)如图2.若,,AB与交于点E,求的半径.参考答案一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.如果与3互为相反数,那么等于(

)A.5 B.1 C.-1 D.-5【答案】A【分析】根据相反数的意义,求得a,再求解即可.【详解】∵a与3互为相反数,∴a=-3,∴|a-2|=|-3-2|=5,故选A.【点睛】本题考查了相反数的定义,求一个数的绝对值,根据相反数的定义求得的值是解题的关键.2.截至北京时间2021年1月3日6时,我国执行首次火星探测任务的“天问一号”火星探测器已经在轨飞行约163天,飞行里程突破4亿公里,距离地球接近1.3亿公里,距离火星约830万公里,数据8300000用科学记数法表示为(

)A.8.3×105 B.8.3×106 C.83×105 D.0.83×107【答案】B【分析】直接利用科学记数法的定义及表示形式,其中,为整数求解即可.【详解】解:根据科学记数法的定义及表示形式,其中,为整数,则数据8300000用科学记数法表示为:,故选:B.【点睛】本题考查了科学记数法的表示方式,解题的关键是:掌握其定义和表达形式,根据题意确定的值.3.下列运算正确的是(

)A. B. C. D.【答案】C【分析】根据同底数幂的运算法则,合并同类项,负整数幂的运算法则,逐个计算各个选项,即可解答.【详解】解:A、,故A不正确,不符合题意;B、,故B不正确,不符合题意;C、,故C正确,符合题意;D、,故D不正确,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的运算法则,合并同类项,负整数幂,解题的关键是掌握同底数幂相乘(除),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;即的乘方,把每个因式分别乘方;合并同类项,字母和相同字母是指数不变,只把系数相加减.4.下列图形,一定相似的是(

)A.两个直角三角形 B.两个等腰三角形 C.两个等边三角形 D.两个菱形【答案】C【分析】根据相似图形的定义,结合图形,对选项一一分析,利用排除法求解.【详解】解:A.两个直角三角形,不一定有锐角相等,故不一定相似;B.两个等腰三角形顶角不一定相等,故不一定相似;C.两个等边三角形,角都是60°,故相似;D..任意两个菱形的对应边的比相等,但对应角不一定相等,故不一定相似;故选C.【点睛】本题考查的是相似图形的概念,掌握对应角相等,对应边的比相等的多边形,叫做相似多边形是解题的关键.5.有下列说法:(1)直径是弦;(2)经过三点一定可以作圆;(3)圆有无数条对称轴;(4)优弧的长度大于劣弧的长度.其中正确的有(

)A.1个 B.2个 C.3个 D.4个【答案】B【分析】根据连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧进行分析.【详解】解:直径是圆中最长的弦,说法正确,符合题意;经过不在同一条直线上的三点一定可以作圆,不符合题意;圆有无数条对称轴,符合题意;没有强调是在同圆或等圆中,不符合题意;正确的说法有2个,故选:B.【点睛】本题主要考查了圆的认识,关键是掌握直径、弧的定义,注意在同圆或等圆中,优弧的长度一定大于劣弧的长度.6.下列事件为必然事件的是(

)A.买彩票中奖 B.打开电视,正在播放《脱口秀》C.抛掷一枚硬币,正面向上 D.不在同一直线上的三个点确定一个圆【答案】D【分析】必然事件就是一定发生的事件,依据定义即可判断.【详解】解:A、买彩票中奖是随机事件,选项错误;B、打开电视,正在播放《脱口秀》是随机事件,选项错误;C、抛掷一枚硬币,正面向上是随机事件,选项错误;D、不在同一直线上的三个点确定一个圆是必然事件,选项正确.故选:D.【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.7.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()

A.

B.

C.

D.

【答案】A【详解】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14.故选:A.考点:正方形的性质,勾股定理.8.已知抛物线:,将抛物线平移得到抛物线,若两条抛物线和关于直线对称,则下列平移方法中,正确的是(

)A.将抛物线向右平移3个单位 B.将抛物线向右平移6个单位C.将抛物线向左平移3个单位 D.将抛物线向左平移6个单位【答案】B【分析】根据函数解析式得到抛物线的顶点坐标,设顶点坐标为,再根据对称轴为x=1,求出抛物线的顶点坐标,根据平移的性质即可求解.【详解】解:∵,∴抛物线的顶点坐标为,设顶点坐标为,∵抛物线和关于直线对称,∴点和点关于直线对称,即有:,∴,∴的解析式为,即,可知:由到,抛物线需向右平移6个单位,故选:B.【点睛】本题考查了函数图象的平移,二次函数顶点式的性质,中点坐标公式等知识,要求熟练掌握平移的规律是解答本题的关键.第Ⅱ卷二、填空题(本大题共8个小题,每小题3分,共24分)9.小聪有一本账册,如果小聪把收入元记为元,则支出元记为元.【答案】【分析】本题考查正负数的实际意义,根据正负数表示一对相反意义的量,收入为正,支出为负,进行表示即可.【详解】解:把收入元记为元,则支出80元记为元;故答案为:.10.若式子在实数范围内有意义,则x的取值范围是.【答案】/【分析】本题考查二次根式有意义的条件.根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,,解得.答案为:.11.如图,点在同一条直线上,平分.若度,则为度;若为度,则∠GFB为度.

【答案】70【分析】首先求出,根据角平分线的定义得出,根据得出,解答即可.【详解】解:点,,,在同一直线上,,,平分,,,;点,,,在同一直线上,为,,平分,,,,故答案为:70,.【点睛】此题考查平行线的性质,角平分线的定义,关键是根据平行线得出和利用角平分线解答.12.若关于x的一元二次方程无实数根,则k的取值范围是.【答案】【分析】根据根的判别式即可求解.【详解】解:∵,∴,∴.故答案为.【点睛】本题考查了一元二次方程根的判别式,解题关键是掌握当时,方程没有实数根.13.某食用油生产厂要制造一种容积为5升(1升=1立方分米)的圆柱形油桶,油桶的底面面积s与桶高h的函数关系式为.【答案】【详解】试题分析:由题意分析可知,容积等于底面积与高的乘积,所以考点:容积知识点评:本题属于对容积和面积以及高的基本知识的理解和运用14.的弦的长等于半径,那么弦所对的圆周角等于度.【答案】或【分析】一条弦所对的圆周角有两种情况:当圆周角的顶点在优弧上,圆周角应是一个锐角;当圆周角的顶点在劣弧上,圆周角是一个钝角.【详解】解:∵弦的长等于半径,∴当把圆心分别与点A,B连接,可得等边三角形,等边三角形的内角是,∴弦所对的圆心角是,∴弦把圆分成和的两段弧,根据弧的度数等于它所对的圆心角的度数,而一条弧所对的圆周角的度数等于所对圆心角度数的一半,∴弦所对的圆周角等于或.故答案为:或.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.如图,等边中,,为上一点,且,为上一动点,则的最小值为.

【答案】【分析】过点作点关于的对称点,连接、、,过作,与的延长线交于点,求得的值即为的最小值.【详解】解:过点作点关于的对称点,连接、、,过作,与的延长线交于点,

则,,,,,,,,,当、、三点在同一直线上时,的值最小,故答案为:.【点睛】本题考查了轴对称的性质,勾股定理,等边三角形,关键是确定最小值时点的位置.16.已知,直线与轴相交于点,以为边作等边三角形,点在第一象限内,过点作轴的平行线与直线交于点,与轴交于点,以为边作等边三角形(点在点的上方),以同样的方式依次作等边三角形,等边三角形,则点的横坐标为.【答案】【分析】直线直线可知,点坐标为1,0,可得,由于是等边三角形,可得点,把代入直线解析式即可求得的横坐标,可得,由于是等边三角形,可得点;同理,,发现规律即可得解,准确发现坐标与字母的序号之间的规律是解题的关键.【详解】解:∵直线l:与x轴负半轴交于点,∴点坐标为1,0,∴,过,,作轴交x轴于点M,轴交于点D,交x轴于点N,

∵为等边三角形,∴∴,∴∴,当时,,解得:,∴,,∴,∴,∴,∴当时,,解得:,∴;而,同理可得:的横坐标为,∴点的横坐标为,故答案为:.【点睛】本题主要考查了一次函数图象上点的坐标的特征,勾股定理的应用,等边三角形的性质,特殊图形点的坐标的规律,掌握探究的方法是解本题的关键.三、解答题(本大题共11个小题,共102分.解答应写出文字说明,证明过程或演算步骤)17.(6分)计算:.【答案】【分析】先根据负整数指数幂、零指数幂的运算法则,乘方的运算法则和绝对值的意义进行计算,然后再按照有理数混合运算法则进行计算即可.【详解】解:.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂、零指数幂的运算法则、绝对值的意义.18.(6分)解下列不等式(组),并将其解集在数轴上表示出来.(1)(2)【答案】(1)x≤-2,数轴见解析(2)-5<x-2,数轴见解析【分析】(1)按照移项,合并同类项,化系数为1的步骤解一元一次不等式,并在数轴上表示出不等式的解集即可求解;(2)分别求出每一个不等式的解集,在数轴上表示出不等式的解集,进而判断出解集.【详解】(1)移项,得4x-6x≥3+1合并同类项,得-2x≥4系数化为1,得x≤-2其解集在数轴上表示为:(2)解:解不等式①得:x>-5解不等式②得:x<-2不等式①②的解集在数轴上表示为:因此,不等式组的解集为:-5<x<-2【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式的解集,正确的计算是解题的关键.19.(6分)先化简,再求值:[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y,其中x=2019,y=.【答案】﹣x+4y,﹣2018.【分析】根据完全平方公式、平方差公式和多项式除以单项式法则计算即可.【详解】解:[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y=[x2﹣4xy+4y2﹣x2+9y2+3y2]÷4y=[﹣4xy+16y2]÷4y=﹣x+4y,当x=2019,y=时,原式=﹣2019+4×=﹣2018.【点睛】此题考查的是实数的混合运算和整式的乘除法,掌握负指数幂的性质、零指数幂的性质、绝对值的定义、完全平方公式、平方差公式和多项式除以单项式法则是解决此题的关键.20.(8分)如图,点E是正方形的边上不同于C,D的任意一点,延长至点F,使.分别过点E,F作的垂线,相交于点G.(1)如图1,连接,、与有何关系?请说明理由.(2)如图2,连接.若.①当点E是的中点时,____________;②当点E不是的中点时,的值与①相比,有变化吗?请说明理由.【答案】(1),理由见解析(2)①;②不变化,理由见解析【分析】(1)证明即可得到;(2)先证明四边形是正方形,延长,相交于点H.①当点E是的中点时,四边形的边长等于,然后根据求解即可;②设四边形的边长为b,根据求解即可.【详解】(1)∵四边形是正方形,∴.在和中,∴,∴;(2)∵,∴四边形是矩形,∵,∴四边形是正方形.①∵E是的中点,∴,∴.故答案为:.②不变化,设四边形的边长为b,.【点睛】本题考查了正方形的判定与性质,全等三角形的判定与性质,整式的加减,数形结合是解答本题的关键.21.(10分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个样品进行检测.过程如下:收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别频数165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间1220分析数据:车间平均数众数中位数方差甲车1乙车6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为(2)乙车间的合格产品数为个;(3)乙车间生产的新产品更好,理由见解析.【详解】分析:(1)根据甲车间样品尺寸范围为176mm~185mm的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为;(2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为,∴乙车间的合格产品数为(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.22.(10分)小军与小玲共同发明了一种“字母棋”游戏来比胜负.他们把分别标有A,B,C,D字母的5枚相同的棋子装入一个不透明的袋子中,其中棋子A、C、D各1枚,棋子B有2枚.“字母棋”的游戏规则如下:①游戏时,两人各摸一枚棋子进行比赛称为一轮比赛,先摸者摸出的棋子不放回;②棋子A胜棋子B、C,棋子B胜棋子C、D,棋子C胜棋子D,棋子D胜棋子A;③相同棋子不分胜负.(1)若小玲先摸,则小玲摸到棋子C的概率是________;(2)若小玲先摸,小军后摸,画树状图或列表,求小玲摸到棋子B,且小玲胜小军的概率.【答案】(1)(2)【分析】本题考查了列表法与树状图法以及概率公式;用到的知识点为:概率=所求情况数与总情况数之比.(1)由概率公式即可得出答案;(2)画出树状图,根据树状图即可得出结论;【详解】(1)∵共有5个等可能的结果,摸到C棋的结果有1个,∴若小玲先摸,则小玲摸到棋子C的概率是.故答案为:;(2)如图,共有20种等可能的结果,小玲摸到棋子B,且小玲胜小军的有4种,所以小玲摸到棋子B,且小玲胜小军的概率为:.23.(10分)某单位计划购进A,B,C三种型号的礼品(每种型号至少1件),要求C型号礼品件数是A型号礼品件数的2倍,三种型号礼品的单价如下表:型号ABC单价(元/件)907075设购进x件A型号礼品,y件B型号礼品.(1)根据信息填表:ABC数量(件)xy______费用(元)90x____________(2)①若购买三种型号的礼品总数为100件,共花费7600元,则三种型号的礼品分别购进多少件?②若购买三种型号的礼品共花费5600元,且A,B两种型号的礼品件数之和超过礼品总数的一半,则三种型号的礼品总数为______件(直接写出答案).【答案】(1)(2)①A购进20件,B购进40件,C购进40件;②77或74【分析】(1)根据题意得:购进2x件C型号礼品,购进B型号礼品的费用70y元,购进C型号礼品的费用75×2x=150x元,即可求解;(2)①根据题意列出方程组,即可求解;②根据题意可得,再由A,B两种型号的礼品件数之和超过礼品总数的一半,可得,从而得到,可得x=14或7,即可求解.【详解】(1)解:根据题意得:购进2x件C型号礼品,∴购进B型号礼品的费用70y元,购进C型号礼品的费用75×2x=150x元;故答案为:(2)解:①根据题意得:,解得:,答:A购进20件,B购进40件,C购进40件;②∵购买三种型号的礼品共花费5600元,∴,即,∵A,B两种型号的礼品件数之和超过礼品总数的一半,∴,即,∴,解得:,根据题意得:x,y是正整数,∴x=14或7,当x=14时,,则,此时三种型号的礼品总数为14+32+14×2=74件;当x=7时,,则,此时三种型号的礼品总数为7+56+7×2=77件;综上所述,三种型号的礼品总数为77或74件.故答案为:77或74【点睛】本题主要考查了二元一次方程组的应用,列代数式,一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.24.(10分)如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B.(1)求k的值;(2)把一次函数向下平移个单位长度后,与y轴交于点C,与x轴交于点D.①若,求的面积;②若四边形为平行四边形,求m的值.【答案】(1)(2)①;②【分析】本题考查一次函数与反比例函数的综合,一次函数的平移,平行四边形的性质,掌握一次函数的平移规律和中点坐标公式是解题的关键.(1)把点的坐标代入一次函数和反比例函数的解析式,求出和的值即可;(2)①一次函数的平移遵循“上加下减”,据此求出平移后的解析式,进而确定点和的坐标,用求面积;②用含的代数式表示点和的坐标,根据平行四边形的对角线互相平分,结合中点坐标公式求解即可.【详解】(1)解:一次函数的图象与反比例函数的图象交于点,,解得:的值;(2)①把一次函数向下平移个单位长度后,则其解析式为则直线与y轴交于点C坐标为,与x轴交于点D坐标为时,C坐标为,D坐标为.连接,如图所示,②直线与x轴交于点B坐标为,,四边形为平行四边形,对角线、互相平分.由或由,解得.的值为.25.(12分)看图回答问题:(1)内角和为,小明为什么说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角加一起的那个外角的度数你能求出来吗?它是多少度?【答案】(1)见解析(2)13边形的内角和(3)能,这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论