




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年中考考前集训卷21
数学
(考试时间:120分钟试卷满分:130分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮
擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第1【卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷
一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题
目要求,请选出并在答题卡上将该项涂黑)
1.2024的倒数是()
A.2024B.-2024C.----D•一盛
2024
2.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对
称图形的是()
D.
3.刘慈欣科幻巨作《三体》中所描述的三体文明距地球大约42000()00光年,它们之间被大量氢气和暗物质
纽带连接,看起来似乎是连在一起的“三体星系”.其中数字42000000用科学记数法表示为()
A.4.2、1。7B.4.2x106C.0.42x108D.4200x104*
4.“绿水青山就是金山银山某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工
作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时籽天绿化的面
枳x万平方米,则下面所列方程中正确的是()
60606060
A.——---------=30B.---------——=3
x(l+25%)x(1+25%)%--%
60x(1+25%)60_6060x(14-25%)
D.=30
xX7"
5.如图,在边长为1的正方形网格中,点4,B,。在格点上,以48为直径的圆过C,。两点,则sin/8。。
的值为()
6.如图,在平面直角坐标系X。),中,△/。8的顶点8在x轴正半轴上,顶点力在第一象限内,AO=AB,P,
0分别是0力,力8的中点,函数(k>0,x>0)的图象过点P,连接OQ,若SAOP0=3,则k的值为
7.如图,在平面直角坐标系中,四边形0/8。为矩形,O为生标原点,点小的坐标是(-1,2),点8的纵
710
A.2B.—C.3D.—
33
8.如图(1)所示,E为矩形力〃。。的边/£>上一点,动点P,。同时从点4出发,点尸沿折线4E-EQ-
。。运动到点。时停止,点。沿3C运动到点。时停止,它位运动的速度都是lc〃?/秒.设尸、。同时出发
/秒时,△4尸。的面积为ye”/.已知y与/的函数关系图象加图(2)(曲线为抛物线的一部分),则
下列结论:®AD=BE=5;®cosZABE=③当OV二5时,y=去凡④当U竽秒时,MBEs^QBP;
其中止确的结论是()
D.②④
第n卷
二、填空题(共8小题,满分24分,每小题3分)
9.函数y二号的自变量x的取值范围是
10.因式分解:4m2n-4/P=.
11.如图•小明骑自行车从甲地到乙地,折线表示小明途中行程力与所花时间,(/?)之间的函数关系.Hl
发后5小时,小明离甲地F米.
12.一组数据有5个自然数:4、5、5、X、户这组数据的中位数为4,唯一的众数是5,那么,所有满足条
件的小),中,x+y的最大值是.
13.如图,四边形力4C0是。。的内接四边形,4E是。。的直径,连接/£若NBCD=2NBAD,则
14.若关于x的一元二次方程f-(什4)x+3+左=0恰有一个根小于0,则k的取值范围是.
15.校综合实践活动小组的同学欲测量公园内一棵树QE的高度,他们在这棵树的正前方一座楼亭前的台阶
上力点处测得树顶端力的仰角为30。,朝着这棵树的方向走到台阶下的点。处,测得树顶端。的仰角为
60。.已知力点的高度力8为4米,台阶彳C的坡度为1:遍(即4&BC=1:V3),且4、C、E三点在
同一条直线上.根据以上条件求出树OE的高度为米.(测倾器的高度忽略不计).
D
16.如图,在△/18C中,ZJC5=90°,点。是4c上的一点,AC=DC,AB^AE,RAE=AB,连接DE交
/C的延长线于点F,噂=今,则兽=_____________________.
Cb2CD
二.解答题(共11小题,满分82分)
17.(5分)计算:(4)-2一何+25)60。一|2-百|.
(x-3(x-2)>4
18.(6分)解不等式组:bx-lx+1
19.(6分)先化简,再求值:1-导+先表空纥其中工=-2,严去
20.(6分)如图,四边形44CQ中,对角线力。、4。交于点。,AB=AC,点七是8。上一点,且/力4。=
NACD,NEAD=NBAC.
(1)求证:AE=AD\
(2)若N4C8=65。,求N8OC的度数.
A
D
21.(8分)某学校为了了解学生的睡眠情况,随机抽取了部分学生,对他们每天的睡眠时间进行了调查,将
睡眠时间分为五个小组,A:6.5</<7,B:7</<7.5,C:7.5</<8,D:83V8.5,£:8.5</<9,其中,/
表示学生的睡眠时间(单位:h),并将每天睡眠时长结果绘制成如下两幅不完整的扇形统计图和条形统计
图.
根据上述信息,回答下列问题:
(1)在本次随机抽取的样本中,调查的样本容量为;
(2)m=,n=;
(3)补全条形统计图;
(4)如果该校共有学生1000人,请你估计“平均每天睡眠时间不少于8小时”的学生大约有多少人.
22.(8分)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.
(1)搅匀后从中任意摸出I个球,这个球的编号是2的概率为.
(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到
的小球编号比第1次摸到的小球编号大2的概率是多少?(用画树状图或列表的方法说明)
23.(8分)某商场购进甲、乙两种商品共13()个,这两种球的进价和售价如表所示:
甲商品乙商品
进价(元/个)80100
售价(元/个)90115
(1)若该商场销售完甲、乙两种商品可获利1700元,求甲、乙两种商品分别需购进多少个?
(2)经调研,商场决定购进乙商品的数量不超过甲商品的1.5倍,求该商场购进甲商品多少个时,才能
使甲、乙两种商品全部俏售完所获利润最大,最大利润为多少元?
24.(7分)“鸭翼”是指设计在飞机前部的水平翼,乂称为前翼,因早期鸭式飞机的前翼很像鸭子的蹊而得名,
除了增加升力,它还有利于保持飞机的飞行稳定性和可控性.小慧在学习过锐角三角函数的相关知识后,
想利用所学知识制作出一个简易飞机模型.该模型的鸭翼部分如图所示,已知48=35。〃,CE=30cm,且
/。48=45。,/CBE=70。,请帮助小慧计算出CO的长度.(结果精确到0.1c*参考数据:
sin70°^0.94.cos700-0.34,tan70°^2.75)
25.(8分)如图,一次函数^=%什。的图象与反比例函数y=§的图象相交于力、B两点,其中点4的坐标
为(-2,3),点8的横坐标为6.
(1)求这两个函数的表达式;
(2)根据图象,直接写出满足忆6+8-*>0的x的取值范围;
(3)连接0408,点夕在直线48上,且Sfopn/s.oP,求点P的坐标.
26.(10分)已知为。。的直径,点C和点力为。。上的动点(两点在的异侧且都不与/、8重合),
(1)如图1,若48=10,俞=|〃,求NOC8的度数;
(2)如图2,在(1)的条件下,若BC=6,求。E的长度;
(3)如图2,若4B=4,NZ)C8=60。,.且对任意的点C,弦CO上都有一点产满足8C=2DF,连接8户,
求线段6产的最小值.
27.(10分)如图,抛物线y=ax2+bx+c经过点力(-2,0),8(4,0),与y轴正半轴交于点C,且。。=
2OA,抛物线的顶点为。,对称轴交x轴于点E.直线>=〃d+〃经过8,。两点.
(1)求抛物线及直线8c的函数表达式;
(2)直线(k>0)交线段8C于点〃,若以点。,8,〃为顶点的三角形与A/IBC相似,求”的值;
(3)连接4C,若点尸是抛物线上对称轴右侧一点,点0是直线8C上一点,试探究是否存在以点E为
直角顶点的RSPE。,且满足tanNEQP=tanNO。.若存在,求出点尸的坐标;若不存在,请说明理由.
2024年中考考前集训卷21
数学•答题卡
姓名:___________________________
准考证号:———―—――――I-贴条形码区
注意事项
1.答题前,考牛.先将自己的姓名,准考证号填写清楚,并认真核准
考生禁填:缺考标记「1
条形码上的姓名、准考证号,在规定位置贴好条形码。违纪标记U
2.选择题必须用2B铅笔填涂;非选择题必须用0.5mm黑色签字笔以上标志由监考人员用2B铅笔填涂
答题,不得用钳笔或圆珠笔答题:字体工整、笔迹清晰。
3.请按题号顺序在各题目的答题区域内作答,超出区域书写的答案
选择题填涂样例:
无效:在草稿纸、试题卷上答题无效。
正确填涂■
保持卡面清洁,不要折叠、不要弄破,
4.错误填涂|X||/|
第I卷(请用2B铅笔填涂)
一、选择题(每小题3分,共24分)
l.|A]|BHCJ|DJ2.(A||B|[C||DJ3.|z\l|B||C)|D|
4.|A)|B||C||D)5.|A]|B)|C]|D]6.|A||B||C1|D|
7.|A||B||C||1)|8.|A||B||C||1)|
第n卷
二、填空题(每小题3分,共24分)
9.10.11.
12.13.14.
15.16.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
三、(本大题共11个小题,共82分.解答应写出文字说明,证明过程或演算步骤)
17.(5分)
18.(6分)
19.(6分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
请在各题目的答题区域卜勺作答,超出黑色矩形边框限定区域的答案无效!
20.(6分)
A
BC
21.(8分)
(1)_____________________;
(2)_________________m=_____________,n=___________;
卜学生(人数)
___3U
</介7、\:25:________________
■..■...
1In:,
ABCDE版|J
Vy
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
22.(8分)
(1)
23.(8分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
26.(10分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
27.(10分)
2024年中请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!考考前
集训卷21
数学.参考答案
第I卷
一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题
目要求,请选出并在答题卡上将该项涂黑)
12345678
CCACACBA
第n卷
二、填空题(本大题共8小题,每小题3分,共24分)
9.且xWO10.4〃(加+〃)(〃?-〃)11.3012.5
4
13.30"\4.k<-315.1216.-
3
三、解答题(本大题共11个小题,共82分.解答应写出文字说明,证明过程或演算步骤)
17.(5分)
解:原式=4—3>/3+2x第—(2—V3)
=4-3V3+V3-2+V3
=4-2+V3+V3-3V3
=2—V3.................................................................................5分
18.(6分)
fx-3(x-2)>4®
解:2x-lx+lz-'
解不等式①得:xV1,
解不等式②得:xW5,
工不等式组解集为xVl.6分
19.(6分)
x-2yj>+y)(x-y)
解:原式=1一=4分
x+y(x-2y)27=2^~7^7
当x=-2,y=/时,原式=.............................................................6分
20.(6分)
证明:(1)•;NBAC=NEAD
:.ABAC-ZEAC=/EAD-/EAC
印:ZBAE=ZCAD
^ABD=^ACD
在△力BE和△/IC。中〈力8=AC,
,/.BAE=Z.CAD
:,^ABE^£\ACD(ASA),
:,AE=ADx.........................................................................3分
(2)解:VZACB=65°,AB=AC,
:./ARC-/ACR=f>Sa.
AZZ?JC=180°-AABC-ZJC5=180°-65°-65°=50°,
VZABD=ZACD,ZAOB=ZCOD,
:.NBDC=ZBAC=50°................................................................6分
21.(8分)
解:(1)调查人数为:30^-30%=100(人),
故答案为;100;....................................................................2分
(2)204-100X100%=20%,即m=20,...............................................3分
254-100X100%=25%,即〃=25,.....................................................4分
故答案为:20,25;
(3)样本中。组人数为:100-20-25-30-5=20(人),
补全条形统计图如下:
A学生(人数)
6分
(4)1()()()X^^=35()(人),8分
答:该校共有学生1000人“平均每天睡眠时间不少于8小时”的学生大约有350人.
22.(8分)
解:(1)•・•一共有4个编号的小球,编号为2的有一个,
:・P(任意摸出1个球,这个球的编号是2)=1;................................................................................2分
(2)画树状图如下:
升也
第1个球1234
八八八八
第2个球1234123412341234....................................................................6分
一共有16个等可能的结果,其中第2次摸到的小球编号比第1次摸到的小球编号大2的情况出现了2次,
:・P(第2次摸到的小球编号比第1次摸到的小球编号大2)=8分
23.(8分)
解:(1)设甲种商品需购进x个,乙种商品需购进y个,
(x+y=130
由题意得:
1(90-80)x4-(115-100)y=17001
x=50
解得:
y=80'
答:甲种商品需购进50个,乙种商品需购进80个;4分
(2)设该商场购进甲商品加个,则购进乙商品(130■加)个,
由题意得:1301.5〃?,
解得:〃[252,................................................................................6分
设全部销售完所获利润为H'元,
由题意得;卬=<90-80)/HlU15-100)(130-/〃)=-1950,
-5<0,
;・w随m的增大而减小,
・••当m=52时,w有最大值=-5X52+1950=1690,...........................................................................8分
答:该商场购进甲商品52个时,才能使甲、乙两种商品全部销售完所获利润最大,最大利润为1690元.
24.(7分)
解:过点。作。尸_LHE,垂足为产,
由题意得:DF=CE=^cm,EF=CD,
在/中,ZJ=45°,
DP
3分
在RtZXCbE中,ZC5£~70°,
,RECE〜30120(、
•.跖=两/。型二〒(的)'
•・・力8=35。〃,
:.CD=EF=AB+BE-AF=35+置一30-15.9(cm),
:・CD的长度约为15.9cm...................................................................................................................7分
25.(8分)
解:(1)•••一次函数尸心母的图象与反比例函数、=号的图象相交于力(-2,3),
人
,依=-2X3=-6,3=-2%+力①,
・.・反比例函数解析式为)=一*
•・•点3的横坐标为6,
,点8(6,-1),
:.\=6A^iIb@,
①-②得:h=T,
:・b=2,
,一次函数解析式为9=一%+2............................................................2分
^>0;
(2)由图象可得:当xV-2或0VxV6时,一次函数图象在反比例函数图象的上方,BPk]x+b-
4分
(3)当x=0时,y=2,
1
S^AOC=2x2X2=2>
分两种情况:
①如图1,当。在线段,伤上时,
••SAAOP=4s△80P,
••S△月op=百x8=引SAPOC—2一耳=耳'
12
.•.-X2X|XP|=F,
Zd
.2
••必=一引
211
・•・点尸的坐标为(-4,—.............6分
D5
②如图2,当点P在线段84的延长线上时,
:・Syop=x8=S〉poc=2+可=$,
114
:,-x2X\x\=
LPO
,_14
••xp=—
■4Q
,点尸的坐标为—);..............................................................8分
J3
综上所述,点尸的坐标为(—番或(―4,~~~)>
26.(10分)
7/15=1(),
:・(M=OB=OD=5,
V/1D=1;r,
180°X1TT
:.ZAOD的度数为:-=90°,
57r
:.^ACD=^AOD=45°,
VZJC5=90°,
:・NDCB=900-45°=45°2分
(2)过点。作CGL48于点G,如图所示:
VZACB=90Q,/B=10,BC=6,
:,AC=>JAB2-BC2=8,
.BCBG
・・cos/CBG=蔺=前,
•_6BG
••—,
106
解得:BG=3.6,
JCG=y/BC2-BG2=4.8,
:・OG=5-3.6=1.4,
•JN400=90°,
ZZ)OE=180°-90°=90°,
7CGLAB,
:・NCGE=90°,
:.NDOE=NCGE,
♦:40ED=4CEG,
:.△DOEsXCGE、
*_C_G_G_E
♦•-,
ODOE
■4.81.4-OE
=OE,
解得:OE=S,
:.DE=yJOD2+OE2=卜+(/=号^.
5分
(3)连接/Q,AF,DO,如图所示:
0
AB
D
':AB为直径,
,N4CB=90°,
•;NDCB=60°,
:.ZDCA=90°-60°=30°,
:・NAOD=2NACD=60°,
♦:AO=DO,
,△力。。为等边三角形,
J.AD=AO=/48=2,
“:BC=2DF,
■AD_D_F1
ABBC2
VAC=AC,
:.NADC=NABC,
即NADF=/ABC,
:.AADFsAABC,
:.ZAFD=ZACB=90°,
,点少在以力。为直径的圆上,设点M为力。的中点,连接交。收于点〃,当点少在点〃处时,
8/最小,过点M作MN_L4?于点M如图所示:
AZOAD=60°,
VZJMV/=90°,
:,NAMN=900-60°=30",
-:AM=AD=1,
11
:.AN=^AM=^,
:・MN=y/AM2-AN2=与,BN=AB-AN=4-^=3^,
;・BM=7BN?-MN?=VT3,
•:MH=AM=1,
:,BH=圆一1,
・・・8/的最小值为g-l.............................................................10分
27.(10分)
解:(1)由点力的坐标知,04=2,
7OC=2OA=4,
,点。的坐标为(0,4),
(4a—2b+c=0
将点4B、。的坐标代入抛物线表达式得:16a+4b+c=0,
(c=4
1
Q.-
.2
b1
C4
,抛物线的表达式为产-#+i+4;.......................................................1分
将点8、C的坐标代入一次函数表达式得:[4加r=0,
In=4
解得{1二I'
,直线BC的表达式为y=-A-+4:.............................2分
(2)由题意可知力(-2,0),B(4,0),C(0,4),
:・AB=6,BC=4a,N/18C=45°;直线4c的解析式为:>'=2x+4;
若△08"与△/JBC相似,则分两种情况:
①当N〃O8=/C/I8时,AOBHsAABC,
此时OH//AC,
3分
②当时,△OBHsMBA,
:.OB:DC=BIhAB,即4:472=BIh6,
解得8,=3&,
设点H的坐标为(m,-m+4),
・'.(w-4)2+(-w+4)2=(3V2)2,
解得m=l或7(舍去),
:,H(1,3),
;・k=3,.................................................................................................................................................................4
分
综上,左的值为2或3.
(3)存在,理由:
设点尸的坐标为(w,一品2+〃;+4)、点。的坐标为(/,-/+4),
①当点。在点P的左侧时,
如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,
由题意得:/PEQ=90°,
:・/PEN+/QEM=90°,
VZEQM+ZQEM=90°,
:.NPEN=NEQW,
:・NQME=NENP=90°,
:.XQMESRENP,
PNEMPEOA1
标=而=加=tan/£Q叫tanN°G4=无=可
2
则PN=-iw+w+4,ME=1-/,EN=m-I,QM=-t+4,
2
,-im+m+4m-l1
♦•==
1-t-t+42
解得加=±g(舍去负值),
当m=g时,一1/H2+/M+4=2号-5,
・•・点尸的坐标为(JH,2等一S)..7分
②当点。在点P的右侧时,
图3
分别过点尸、。作抛物线对称轴的垂线,垂足分别为N、M,
则"0=L1,ME=L4,^=-1W2+W+4,PN=m-1,
乙
同理可得:XQMESXENP,
.MQMEEQ
••-"N•
ENPNPE
.£一1________£-4_
,-1m2+7n+4rn-1
£•
解得加=±近(舍去负值),
・,・〃?=y/7,
,点尸的坐标为(夕,-2—),
乙
l2V7+1-2>/13-5
・•・点2的坐标为(夕,一--)或(行7,---).......................................10分
2024年中考考前集训卷21
数学•全解全析
第I卷
一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题
目要求,请选出并在答题卡上将该项涂黑)
1•【分析】根据乘积是1的两数互为倒数解答即可.
【解答】解:2024的倒数是福:
2024
故选:C.
【点评】本题考查了倒数,掌握倒数的定义是解答本题的关锂.
2.【分析】根据轴对称图形勺中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,匆形两部分折
叠后可重合,中心对称图形是要寻找对称中心,图形旋转180。后与原图重合.
【解答】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.既是中心对称图形,也是轴对称图形,符合题意;
D.是轴对称图形,不是中心对称图形,故此选项不合题意.
故选;c.
【点评】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.
3.【分析】科学记数法的表示形式为〃xi(r的形式,其中日同<10,〃为整数.确定〃的值时,要看把原
数变成。时,小数点移动了多少位,〃的绝对值与小数点移动的位数相同.当原数绝对值>10时,〃是正整
数;当原数的绝对值<1时,〃是负整数.
【解答】解:42000000=4.2xl07.
故选:A.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为4X10〃的形式,其中〃为
整数,表示时关键要正确确定”的值以及〃的值.
4.【分析】设实际工作时每天绿化的面积x万平方米,根据工作时间=工作总量+工作效率,结合提前30
天完成任务,即可得出关于x的分式方程.
X
【解答】解:设实际工作时每天绿化的面积X万平方米,则原计划每天绿化的面积7777/万平方米,
1+25%
f6060口“60x(1+25%)60
依题意得:一x————=30,即------------———=30.
--------XXX
1+25%
一选:C.
【点评】本题考瓷了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关
键.
5.【分析】由圆周角定理得到N8/C—N6OC,求出sinNB4即可解决问题.
【解答】解:・・18是圆的直径,
:./力。4=9()。,
:,AB=7AC?+BC2=V42+32=5,
••sinN84C=彳^=耳,
':NBAC=/BDC,
3
:.s\nZBDC=s\nABAC=m
故选:A.
【点评】本题考查圆周角定理,锐角的正弦值,掌握圆周角定理,三角函数定义是解题的关键.
6.【分析】作力。_Lx轴于。,/E_Lx轴于E,根据三角形的中线把三角形分成面积相等的两部分即可求得
△力。。的面积为6,然后通过证得△POfs△力由相似三角形的性质即可求得然后
根据反比例困数系数k的几何意义即可求得k=3.
【解答】解:作轴于。,轴于E,
•:AO=AB,
:.()D=BD,
VP,。分别是。4,的中点,
:.S4A0B=2S4A0Q,SAAOQ=2SAPOQ=6,
:・S&AOB=12,
.1
,,S^AOD=~2^£^AOB—6,
'CPE//AD,
:.4POEs»AOD,
,S&POE,°P、21
SfODOA4
1
.••)c△POE_-43c△月QZ)一_3于
;函数尸勺(QO,x>0)的图象过点尸,
*v
:.S»POE=1|用,
・・・|川=3,
•:k>0,
【点评】本题考查了等腰三角形的性质,反比例函数比例系数〃的几何意义:在反比例函数)=母图象中
人
任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴用成的矩形的面积是定值因.在反比例函数的
图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是:阳,且保持不
殳.也考查了相似三角形的判定与性质.
7.【分析】过点/作月O_Lx轴,过点3作8E_L*Z)交04的延长线于点E,证明△月8七54。*。求山8E
即可解答.
【解答】解:过点力作/!O_Lx轴,过点3作4E_L/。交。力的延长线于点E,如图:
;四边形48。是矩形,
・•・ZBAO=90°=ZE=ZADO,
:./DAO=/F.BA,
:.AABESAOAD,
5
BEAEBE3
・,.一二一,即一=2,
ADOA21
解得BE=学,
107
•'・点B的横坐标为-1=3,
3J
故选;B.
【点评】本题考查矩形的性质,相似三角形的判定和性质,正确作出辅助线构造三角形相似是解题关键.
8.【分析】图(2)中,点时坐标为(5,10),此时点P用5秒运动到点E处,aBP。的面积为10cm2.根
据运动的速度都是3〃/秒可得朋=5口〃,那么高"=CQ=4c〃?;根据勾股定理可得力E长3cm点N的坐
标为(7,10),此时点尸运动到N,用时2秒,那么DE长2cm,则4。=5皿,所以①正确;cos/肉=器=春
故②正确;当0〈江5时,点。在BE上,用/表示出aBP。的面积,看③是否正确;勺呈秒时,点尸在。。
上,。已经停止在点C处,画出相关图形,判断和△。台夕是否相似即可得到④是否正确.
【解答】解:•・•点M坐标为(5,10),
・•・点产用5秒运动到点E处,bBPQ的面积为\0crn2.
丁点P、。的运动速度都是1c加秒.
:.BE=BQ=5(cm).
「△4P。的面积为10cw2,
:・AB=CD=―F—=4(cm).
・,・AE=y/BE2—AB2=3(cm).
丁点N的坐标为(7,10),
・•・点P从一开始运动到N,共用时7秒.
工点P从点E运动到点。用时2秒.
:.ED=2cm.
J,AD=AE+DE=5cm.
:・AD=BE=5cm.
故①正确;
•・•四边形力8c。是矩形,
4=90。=ZABC=NC=90°.
./AB4
••cos/-ADE==耳.
故②正确;
当0V合5时,点、P在BE上.
作PM上BC于点M.
:.Z5.WP=90°.
:.AB//PM.
・•・/BPM-/ABE.
4
:・cosNBPM=NCGSABE=宁
由题意得:BP=BQ=tcm,
:*S&BPQ=^BQ*PM=[尸.
故③错误;
勺孑秒时,点?在。。上,。已经停止运动,在点C处.
29
・,.点户运动的路程为丁(5?).
4
291
()
:.DP=-14—5-2=4-rcm.
115
:,尸。=4一不=才(cm).
ttAE3PQ153
'AB~4BQ~4,-4
.AEPQ
'''AB~4
:.XABEsXQBP.
故④正确.
故选:A.
图⑴
图⑴
【点评】本题综合考查了动点同题的函数图象.得到拐点表示的意义是解决本题的关键.用到的知识点为:
cos4=〃飨吗两边对应成比例且夹角相等,两三角形相似.
斜边
第II卷
二、填空题(共8小题,满分24分,每小题3分)
9.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于(),就可以求解.
【解答】解:根据二次根式有意义,分式有意义得:/2川旦在0,
解得:应-2且入#0.
故答案为:迂・2且*0.
【点评】本题考查函数自变量的取值范围,知识点为:分式有意义,分母不为0:二次根式的被开方数是
非负数.
10.【分析】先提取公因式4",再运用平方差公式继续分解..
【解答】解:4〃?2〃-4〃3
=4〃(〃尸一〃2)
=4〃(m+n)(〃?-〃).
故答案为:4〃(m+n)(m-n).
【点评】本题考瓷了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再
用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
11.【分析】根据P点的坐标即可得到结论.
【解答】解:♦.•尸(5,30),
・•・出发后5小时,他离甲地305?.
故答案为:30.
【点评】本题考查了一次函数的应用,能够正确埋解函数图象横纵坐标表示的意义是解题关键.
12•【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平沟数)为中位
数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【解答】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学一年级语文结构分析试题及答案
- 汽车修理行业面临的机遇与挑战试题及答案
- 2025年小学一年级新颖测试试题及答案
- 山东省聊城市2024-2025学年高二上学期1月期末生物试题 含解析
- 皮肤学基础知识考题及答案
- 2024年美容师团队领导能力试卷试题及答案
- 2024年食品质检员考试的经典案例分析试题及答案
- 统计学数据归纳总结试题答案
- c语言关于函数的试题及答案
- 进行宠物营养评估的方法及试题及答案
- 2021年新高考英语读后续写母亲节课件高考英语一轮复习
- 国开经济法律基础形考任务国开电大《经济法律基础》形考任务4答案
- 竖井施工安全问题与预防措施
- 狼人杀上帝记录表
- “三宝”、“四口”、“五临边”防护安全检查表
- 【配套K12】人美版小学五年级下册美术期末知识点
- 4-甲基-2-戊醇-理化性质及危险特性表
- GB/T 1041-2008塑料压缩性能的测定
- 江西住建云-建设项目数字化审图·项目监管一体化平台-建设单位用户手册
- 【计算机应用基础试题】上海中侨职业技术学院2022年练习题汇总(附答案解析)
- 中国近代化历程课件
评论
0/150
提交评论