姚桥煤矿3.0Mt-a新井设计-煤层瓦斯抽放技术_第1页
姚桥煤矿3.0Mt-a新井设计-煤层瓦斯抽放技术_第2页
姚桥煤矿3.0Mt-a新井设计-煤层瓦斯抽放技术_第3页
姚桥煤矿3.0Mt-a新井设计-煤层瓦斯抽放技术_第4页
姚桥煤矿3.0Mt-a新井设计-煤层瓦斯抽放技术_第5页
已阅读5页,还剩157页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科生毕业设计(论文)题目:姚桥煤矿3.0Mt/a新井设计煤层瓦斯抽放技术摘要本设计包括三个部分:一般部分、专题部分和翻译部分。一般部分为姚桥矿7号煤3.0Mt/a新井设计,共分10章:1.矿区概述及井田地质特征;2.井田境界和储量;3.矿井工作制度、设计生产能力及服务年限;4.井田开拓;5.准备方式-采区巷道布置;6.采煤方法;7.井下运输;8.矿井提升;9.矿井通风与安全;10.设计矿井基本技术经济指标。姚桥煤矿座落在江苏省沛县和山东省微山县境内,昭阳湖西畔,交通便利。井田东西走向长度平均10.69km,南北倾斜长度平均4.11km,井田有煤区水平面积39.74km2。井田内可采煤层一层,即7号煤层,平均倾角8.83°,煤层平均厚6.63m,井田工业储量为371.21Mt,可采储量264.65Mt,矿井服务年限为63.01a。煤质牌号为优质气煤。本矿井为低瓦斯矿井,瓦斯绝对涌出量为0.0384m3/min。本矿井煤层易自燃,具有自然发火倾向性,自燃发火期小于3个月。本矿井正常涌水量为508m3/h,最大涌水量为607m3/h。矿井采用双立井单水平开拓,前期采用中央分列式通风,后期在井田东西两翼各设立一边界风井,形成对角式通风。由于矿井地质条件简单,且为缓倾斜煤层,为了便于随采随灌浆,所以整个矿井采用采区式布置,系统简单可靠,便于管理。设计矿井采用一井一面达产,采煤方法为综采放顶煤采煤法。煤炭运输采用胶带输送机运输,辅助运输采用防爆柴油机齿轨卡轨车牵引固定厢式矿车运输。矿井年工作日为330d,每天净提升时间16h。矿井工作制度为:实行“四六”制。专题部分题目是煤层瓦斯抽放技术。翻译部分是一篇关于综采工作面顶板突水的分析与控制,英文原文题目为:Analysisandcontrolonanomalywaterinrushinroofoffully-mechanizedminingfield关键词:新井设计;立井;单水平开拓;综采放顶煤;通风;

ABSTRACTThedesignincludesthreeparts:thegeneralpart,thethematicpartandtranslationpart.Thegeneraldesignisabouta3.0Mt/anewundergroundminedesignofYaoqiaocoalmine.Itcontainstenchapters:1.overviewandthegeographicalfeaturesoftheminingfield;2.boundaryandreservesoftheminingfield;3.workingsystem,designedminecapacityandminelife;4.developmentofminingfield;5.preparationinRoadwaylayout;6.miningmethod;7.undergroundconveying;8.mineexaltation;9.mineventilationandsafety;10.thebasictechnicalandeconomicindexofmine.YaoqiaomineislocatedinPeiCounty,JiangsuProvince,andWeishanCounty,ShandongProvince,anditliesinthewestofZhaoyangLake.Thetrafficisveryconvenient.Minefieldeast-westdirectionlengthis10.69kmaverageandnorth-southtiltoftheaveragelengthof4.11km.Theminefieldcoaldistrictlevelarea39.74km2.Theminablecoalseamofthismineisonly7withanaveragethicknessof6.63mandanaveragedipof8.83°,field371.21Mtforindustrialreserves,recoverablereserves264.65Mt,themineforaservicelife63.01a.Coalgradesforthequalityofgascoal.Themineisthelowgasmine,thegasabsolutelyemission0.0384m3/min.Thisminecoalseamspontaneouscombustionhasanaturalignitionpropensitytospontaneouscombustionperiodislessthanthreemonths.Normalinflowofthemineis508m3/h,thelargestinflowofthemineis607m3/h.Mineadoubleverticalshaftsingleleveldevelopment,pre-centralbreakdownofventilation,thelateminefieldeastandwestwingsoftheestablishmentofaboundaryairshafttoformadiagonalventilation.Astheminegeologicalconditions,andtilttheseamforease,inordertofacilitatewiththeminingwiththegrouting,sotheentirelayoutofthemineminingarea,thesystemissimple,reliable,easytomanage.Designofmineisawellsideoftheproduction,miningmethodforfullymechanizedcoalcavingminingmethod.Coaltransportationbybeltconveyortransport,auxiliarytransportcograilvehiclesintheexplosion-proofdieseltractionfixedvantramcartransport.Wework330daysperyear,andexaltate16hoursoneday.The“four–six”workingsystemisappliedforcoalmining.Thethematicpartofthetopicofthecoalseamgasdrainagetechnology.Thetranslationpartisabouttheanalysisandcontrolonanomalywaterinrushinroofoffully-mechanizedminingfield,theoriginalEnglishtextentitled:Analysisandcontrolonanomalywaterinrushinroofoffully-mechanizedminingfieldKeywords:Newdesignofmine;Shaft;Single-leveldevelopment;ComprehensiveCaving;Ventilation第页英文原文Analysisandcontrolonanomalywaterinrushinroofoffully-mechanizedminingfieldPengLinjuna,b,c,YangXiaojiea,c,SunXiaominga,caSchoolofMechanicsandCivilEngineering,ChinaUniversityofMining&Technology,Beijing100083,ChinabAcademicianPioneeringPark,DalianUniversity,Dalian116622,ChinacStateKeyLaboratoryofGeomechanicsandDeepUndergroundEngineering,ChinaUniversityofMining&Technology,Beijing100083,ChinaAbstract:Cavingofmineroofsfromwaterinrushduetoanomalouspressureisoneofthemajordisastersandaccidentsthatcanoccurinminesduringproduction.Roofwaterinrushcantriggerawiderangeofroofcollapse,causingmajoraccidentsfrombreakingroofsupportswhilecaving.Thesefailuresfloodwellsanddoagreatdealofdamagetominesandendangerminesafety.Ourobjectiveistoanalyzetheanomaliesofwaterinrushcrushingthesupportatthe#6301workingfaceintheJisanCoalMineoftheYanzhouMiningGroup.Throughinformationofwaterinrushtotheroof,damagecausedbytectonicmovements,informationonthedamagecausedbyroofcollapseandthetheoryaboutthedistributionofpressureinmineabutments,weadviceadjustingthelengthoftheworkingfaceandthepositionofopen-offcutrelativelytotherichwaterarea.Inthecaseofanomalousroofpressureweshoulddevelopastateequationtoestimatepreventivemeasureswith“transferringrockbeam”theory.Simultaneously,weimprovethecapacityofdrainageequipmentandensuredadequatewaterretentionatthestorehouse.Theseareallmajortechnologiestoensurethecontrolandpreventionagainstaccidentscausedbyanomalouswaterinrushinroofs,thusensuringsafetyintheproductionprocessofacoalmine.Keywords:Roof;Waterinrushpressure;Anomaly;Analysis;Control;abstract;Caving1.IntroductionBothdomesticandforeigninvestigatorspayconsiderableattentiontocoalminepressureanomaliesandobtainedvariousresults.However,becauseofthecomplexityofanomalouspressure,aswellasthemutabilityofsurroundingrockconditionscausedbycaving,anumberofdifficultiesareencounteredinbuildinganexactandsystematicmathematicalmechanicalmodel.Furthermore,becausegeologicalconditionsdifferconsiderablyinvariouspartsofacoalfieldandtherealityisverycomplex,wemustthereforeadoptanumberofdifferentmeasuresandmethodstopredictandmonitorgeologicalconditions,giventhatmanymethodshavetheirownlimitations.Theprocessofcalculationforthesupportofthesurroundingrocksummarizesthismechanism,thusperfectingthemethodofforecastingandmonitoring,formingafeasibleandefficientsystemforsafetyinproduction,ensuringsecurityandefficiencyatcoalminingfaces.Coalminepressureanomalies,showingupinfully-mechanizedcavingfields,asdynamicphenomenainterferingwithsafeproductionincoalmines,refertoanomalousrockpressureoccurringunderspecialconditions.Whenthemechanicalbalanceisbrokeninacoal(rock)bodyaroundacoalminingfield,itusuallyshowsupasdamagetothesupportsystem,asacrushedorsinkingrooflevelorasseverespalling,beforetheoccurrenceofriskyleaksandultimatelycoalandgasoutbursts.Whenrockpressureappearsasanomalies,itoftenresultsindamagetoequipment,significantlossofcoalresourcesandformingsimultaneouslysignificantsecurityrisks,whichincoalminesmayleadtodevastatingconsequences.Inrecentyears,alargenumberofminepressureanomaliesoccurredinfully-mechanizedcavingminesinChina’sYanzhouandXuzhouminingareas,causingconsiderableeconomiclossestocoalcompanies.Therefore,furthersystematicstudyofthestructureandmovementoftheoverlyingrockinfully-mechanizedcavingmines,mayrevealthebehaviorofminepressureanomalies,discovertheconditionsunderwhichtheseanomaliesoccur,findmethodstoforecastandpreventthem,inordertoachievesafetyandefficientproduction.2.CoalseamconditionsandstructureofoverlyingrockTheJisanCoalMineislocatedinasuburbofJiningcity,wheretheminingareaisabout110km2.Geologicalreservesof880milliontons,industrialreservesof800milliontons,andrecoverablereservesof530milliontonshavebeenconfirmed.The#3coallayerhas400milliontonsofcoal,accountingfor75.5%ofrecoverablereserves.ThesecoalstrataarepartofthePermianShanxiFormationandtheCarboniferousTaiyuan,witheightlayersoflocallyaccessiblecoalandanaveragethicknessof10.44m.Themajorrecoverablecoalisfoundinthe3up,3downlayerwithanaveragethicknessof6.21m.Thegeologicalconditionoftheminingareaisasimplemiddlestructure.Themainnorthesouthnormalfaultisapparentlyregular,withmostoftheeastrisingandthewestfalling.Also,therearefaultsshowingthedevelopmentofeastewestwiththeeastandsoutheastdippinggently,generallyatslopeslessthan5°,andgentlechangesintheirwrinklytrend.Deeperdipstowardthewestandsouthwesthaveslopesbetween5°and9°.Themineisexpectedtodischarge516m3/hofcoalwater.Thekeylayer,affectinganomaliesinwaterinrushfromtheroofintheworkingfaces,isthefollowinglayerofthesecondrockbeam,i.e.M5siltstone,6.5mthick,andadetailedroofrockstructureisshowninTable1.Table1.Profileofcaveminingfaceofastoperoof.No.LithologyThicknessoflayer(m)Depth(m)RoofstructureThickness(m)StepC0C。。。。11.20639。。。4.20。。3.80M5。。。。6.50FollowinglayerThesecondrockbeam16.56020M4。。10.00Supportlayer。。。。M3。。。。9.00FollowinglayerThefirstrockbeam28.08227。。。。M2。。19.00SupportlayerContinuedTable1。。。。。。M17.00Immediateroof7.0M7.066853.AnalysisofroofwaterinrushpressurecausinganomalouscrushingsupportsThemainreasonsforthefivewaterinrushaccidentswhichfloodedthe#6301workingfaceofJisanaretwofold:1)theoverlyingstratumcontainswater;accordingtodrillingdatafromthesurfaceandaudio-frequencyelectricalpenetrationatthisworkingface,therearefourwater-richareasabovetheface,locatedatbothendsandthemiddle.Moreover,water-richJurassicstrataarefoundat193mabovetheroofof3downcoalseam.2)Largeareaofmainroofcaving,breaklinesextendingtooverlyingaquifers,aswellasfaultsintheworkingface;withtheinitialfaceexposed,waterisshowingupalongthefaultplane;withworkingfaceadvancing,theexposedfaultlengthalsoincreases,resultinginacontinuouslyincreasingwaterinrush.Therefore,thebreaklinescommunicatefaultstothewater-richfaultzonesasshowninFig.1.Fig.1#6301workingfacefloodingaccident.3.1.Reasonsofroofwaterinrushanomaliescrushingsupport1)Thesupportforceresistingpressureisinsufficientagainstroofconvergence(supportisworkingunderagivendeformationstatus).2)Pressureontheroofrockbeamsisexcessive;supportloadbearingcapacitycannotmeettheconditionstomainroofconvergence(tothegivendeformationstatus),i.e.,roofconvergenceexceedsthemaximumvalueofnominalyieldofsupport.3.2.Conditionsofoccurrenceofroofwaterinrushanomaliescrushingsupports1)Withprogressivefaceadvance,theoverlyingrocklayerisincommunicationwiththewater-richsandstonelayerwhichcausesincreaseinthethicknessofsimultaneouslymovingmainroof,decreaseinmainroofspanlength,andincreaseinroofpressure;2)Thedepthofroofbreaklinesfromthefrontwallincreases,causingdecreaseinthethicknessofimmediateroof;3)Theimmediateroofisthinwhichincreasestheroofefloorconvergence;4)Themainroofis,ingeneral,verythick,anditiseasytoformalargecantileverbeamspace,causinganimpactonthemainroofdynamicpressurewhenroofcaving.3.3.Structuralmodelofroofwaterinrushcausedbyanomalies1)Ina“givendeformation”condition,theroofconvergenceisdeterminedbythepositionofafree-fallingrockbeamcontactingthefloorinthegobshowninFig.2,i.e.,△hT=△hA。Where(1)(2)Fig.2Structuralmodelofawaterinrushaccidentofafully-mechanizedcavingmine.2)RelationshipbetweenroofwaterinrushandmovementofoverlyingrockstrataInacaseofagivenopen-offcutpositionandthelengthoftheworkingface,thebrokenrockstratamayreachtorockaquifer,especiallywater-richregion,withprogressivefaceadvance.Whentheaquiferisparalleltotheseam,asinFig.3,thepossibilityoffloodingandrelatedparametersofthemodelcanbedetermined.WhereListheadvancestepattheworkingface;Lolengthofworkingface;LBwater-richareainrockstratumofwateropen-offcutlocation;Lhcenterofbreakingrocks(breakingarch)cutfromthebottomposition;hheightofbrokenrockstratum;Hheightofwaterinrockstratum;andBwidthofwater-richzone.Fig.3Forecastinggraphofpossiblepermeability.3.4.Supportconditionsin#6301workingfaceandtheactualeffectsofroofcontrolduringfloodAccordingtotheanalysisofthefirstroofwaterinrushaccident,thepressurecrushedthesupportofthe#6301workingface,whenitadvanced613m,increasedthevolumeofthewateratthefaceto50m3/h,floodingthecoalmineandthegobarea.Withtheworkingadvancing,abigbangabovethefacewasheard(thesoundofmainroofbreaking)andthevolumeofwateratthefaceincreasedto327m3/h,withamaximumvolumeof350m3/h.Thiscausedsomeofthetemporaryelectricalstationstobeinundatedandworkatthefacewasforcedtostop.Theroofsuddenlybrokeandsunk,thesupportsof#11-67werecrushedattheface.Whenwatersuddenlyfloodedtheworkingfaceandtheamountofwaterincreasedconsiderably,thecapacityofthepumpoftheintegrateddrainagesystemwasinsufficient,resultinginanamountofwater2mdeepattheface.Atthestart,largevolumesofwaterweredischargedintheroadway.Slurrywater,coalandotherdebrisfloodedintoairtightwall,closedtheoutlet,andappeareddangeroussituationduetohighwaterpressure.Peakdischargelastedfivedays,thewaterinflowcontinuedforsevendays,andtheentirewatergushingprocesslasted41days.Thepositionofwaterinflowisatthelocationofmainroofperiodiccaving.Inagivengeo-miningconditioninthiscase,structuralparametersarecalculatedbyusingstructuralmechanicmodelstoassessthesupportrequirementinthefollowing.Whentheminingdepthisabout700m,thecoalseamis7m,thelengthoftheworkingface200mandafter200madvance,thefrontdistanceofSMisabout20m.FromEq.(3),wehavethefollowingresults:Thebreakingdistancefromthefrontwalloffaceatthelowerrockbeamis:(3)Thelowerlimitofsupportcapacity:(4)Theupperlimitofsupportcapacity:(5)Thelowerlimitofsupportresistance:(6)Theupperlimitofsupportresistance:(7)Underconditionsofroofwaterinrushwhentheworkingfaceisstop,thelargestroofconvergence(hd=0)(8)ThecurrentsupportworkingresistanceisRT=6200kN,maximumconvergenceis3max?1000mm.Obviously,thesupportresistance(RT=6200kN)islessthanthe“givendeformation”ofthemaximumresistanceforce(RT=9975kN)required.Asaresult,thesupportsystemwillworkinastateof“givendeformation”.Ifthereisnofloorcoalleft(hd=0)ornomeasuresaretakentospeedupthefaceadvance,collapseofthefacesupportswilloccurandresultinmoreseriousfloodinghazard.Iftheadvanceoffaceisfast,i.e.,letS0?0,theconvergenceoffaceiscontrolledintherangeof△hA=0.8M,collapseofthefacesupportscanbeavoidedaslongasthecuttingheightisadequate.4.ConclusionsTheanomalouspressureintheworkingfaceandwaterinrushccurred,causedbygeologicalfactorsfirst,theoverburdenaquifersthemainfactor.Strengtheningofforecasttechnologyandaccurateredictionofthe“twozone”developedheightisneeded.ccordingtoadetailedhydro-geologicalreport,adegreeofommunicationbetweenaworkingfaceandtheamountofwaternrocklayersneedstobedetermined.Wecandrawthefollowingonclusions:1)Beforemainroofperiodiccavingoccurs,beginusingnotopcoalavingadvancemethod,untilthemainroofcavinginordertoakesurethatthemainroofhasenoughcushionstoreducetheheightoftheultimateconvergence.2)Beforemainroofcaving,ensurethelargestcuttingheight.Supportmustbemaintainedaslongaspossibleatahighlevelcollapseofthefacesupportsinordertomaintainthemaximumlegconvergencetoreducethepossibilityofsupportclosure.3)Inacaseofgivenlengthoftheface,thescopeoftheoverlyingstrata,includingthethicknessofboththeimmediateandthemainroofaswellastheheightofthepermeablefracturezone.Thespanofmainfallandperiodiccavinglocationmayfallintothefracturedzoneoftheaquiferundertheactionofgravity.4)Informationonthedistributionoftheabutmentpressurefocusedonthewidthcausedby“internalstressfield”aroundthewallsoftheworkingface.5)Reasonableselectionandtransformationofsupport.Inordertopreventthecollapseofsupportsduetoroofcaving,wecanselectpropersupportandincreasethecaliberofsafetyvalvestoadjusttherapidyieldvalverequirementforsafeworkingofthesupport.Inshort,scientificmanagement,overallarrangements,organizinghighlyefficientproductionandacceleratingthespeedoffaceadvancearerequired.Rockstratafailureandmovementneedsatimeperiod,wecanacceleratefaceadvancewherepressureanomaliesmayappear,thentherooffallsmayoccurinthegobtoavoidoccurrenceofpressureanomalies.

中文译文综采工作面顶板突水的分析与控制彭林俊a,b,c杨晓杰a,c孙晓明a,ca中国矿业大学(北京)力建学院,中国北京100083;b大连理工大学学者创业园,中国大连116622;c中国矿业大学(北京)岩土力学地下工程国家重点实验室,中国北京100083;摘要:压力异常造成的顶板突水是煤矿生产个过程当中造成灾害的主要因素之一。顶板突水会引起大面积的顶板垮落,在顶板破碎支撑开采中会造成严重的灾害。突出的水会造成淹井事故并对矿井安全造成危害。本篇旨在分析兖州煤业集团济宁三号矿6301工作面的异常突水对支护的影响。通过对地质运动造成的顶板突水以及根据矿业理论顶板垮落的危害的信息分析,我们建议参考富水区调整工作面长度和开切眼的位置。若遇到顶板压力异常的情况,我们应该根据“砌体梁理论”建立。同时改善排水系统的排水能力并保证水仓有适当的存留量。通过这些,我们就能对顶板水突出做好防治的工作,进而确保煤矿的安全生产。关键词:顶板;突水压力;异常;分析;控制1.引言国内外有诸多学者对矿压做了大量研究并得出了丰硕的成果。但是,矿压的的不规律性和由开采引起的围岩条件的多变性使得建立一个系统、科学、准确的力学模型变的非常困难。此外,现实中一块煤田的不同区域的地质条件也不尽相同,非常复杂。同时考虑到各种研究方法的局限性,所以我们必须用很多种不同的方法去预测和检测地质条件。对围岩支护数据的计算分析,完善了预测和检测方法,从而形成了一个能确保工作面安全,高效生产的合理的检测、预测系统。综采放顶煤工作面的矿压显现一般是在压力异常的情况下发生的,以动态的形式影响工作面正常、安全生产。围岩的力学平衡被破坏,从而导致支护系统失稳,顶板破碎坍塌,最终引发煤与瓦斯突出。矿压显现的不规律不仅破坏工作面设备,造成煤炭资源的损失,而且会威胁到人的生命安全,甚至有可能引发一场灾难。近些年,在兖州和徐州矿区的很多矿井出现冲击矿压,给煤矿企业造成了很大的经济损失。因此,对综采工作面围岩结构和运动的近一步研究,可以揭示矿压显现的规律性,从而找到在采煤过程中预防或防止冲击矿压的发生的方法,以达到安全高效生产的目的。2.煤层地质条件以及上覆岩层结构在位于济宁市郊区济三煤矿,矿区面积约110平方公里,地质储量为8.8亿吨,工业储量8.00亿吨,可采储量5.3亿吨。3号煤层储量4亿吨,占整个矿井可采储量的75.5%。这些煤层是二叠系山西组和石炭系太原组的一部分,共有八层煤,平均厚度为10.44米。主要可收回煤炭是3上,3下层,平均厚度为6.21米。矿区中央是一条南北走向的大断层,造成东面地势上升,西面地势下降。另外还有一些东西走向的小断层。在煤田的东面和东南方向是比较平缓的,大部分煤层倾角小于5°,在有褶皱的地方角度有比较平缓的变化。较深的向斜结构向西和西南方向延伸,角度在5°到9°之间。矿井预计排水量516m3/h。关键层是地表以下第二岩梁,即M5的粉砂岩,厚6.5m。影响着工作面顶板的突水,详细顶板岩石结构见表1。3.水引起的主要支护系统破坏分析济三矿曾发生5次水淹6301工作面的事故,其主要原因分为两方面:(1)在上部岩层中有含水层;据钻井和工作面音频探测,发现地表有四个水积聚区,分别在煤层所对应地表的两端和中间。此外,在3下煤层顶板的上方193m处发现有含水丰富的侏罗纪地层。表1工作面垮落岩层概况序号岩性岩层厚度(m)深度(m)顶板结构最大厚度(m)StepC0C。。。。11.20639。。。4.20。。3.80M5。。。。6.50底板第二关键层16.56020M4。。10.00顶板。。。。M3。。。。9.00底板第一关键层28.08227。。。。M2。。19.00顶板。。。。。。M17.00直接顶7.0M7.06685(2)大面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论