上海东海职业技术学院《人机交互设计》2023-2024学年第二学期期末试卷_第1页
上海东海职业技术学院《人机交互设计》2023-2024学年第二学期期末试卷_第2页
上海东海职业技术学院《人机交互设计》2023-2024学年第二学期期末试卷_第3页
上海东海职业技术学院《人机交互设计》2023-2024学年第二学期期末试卷_第4页
上海东海职业技术学院《人机交互设计》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页上海东海职业技术学院

《人机交互设计》2023-2024学年第二学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的文本分类任务中,除了传统的机器学习算法,深度学习方法也取得了很好的效果。以下关于文本分类中深度学习方法的描述,哪一项是不准确的?()A.可以自动学习文本的特征表示B.对于长文本的处理能力优于短文本C.不需要进行特征工程D.训练数据量越大,效果一定越好2、在人工智能的医疗应用中,疾病诊断是一个重要的方向。假设我们要利用人工智能技术辅助医生诊断心脏病,需要对大量的医疗数据进行分析。那么,以下关于人工智能在医疗诊断中的作用,哪一项是不准确的?()A.能够发现医生难以察觉的细微模式和关联B.可以完全取代医生的诊断,独立做出准确的判断C.有助于提高诊断的效率和准确性D.需要结合医生的临床经验和专业知识进行综合判断3、人工智能中的优化算法用于训练模型和寻找最优解。假设要训练一个复杂的神经网络模型,以下哪种优化算法可能最为有效?()A.随机梯度下降(SGD)算法,简单直接,适用于各种模型B.自适应矩估计(Adam)算法,能够自动调整学习率,收敛速度快C.牛顿法,计算精度高,但计算复杂度大,不适合大规模数据D.以上算法的效果取决于具体的问题和模型结构,需要进行实验和比较4、假设要开发一个能够在虚拟环境中进行自主探索和学习的人工智能体,例如在游戏中不断提升能力,以下哪种学习机制和策略可能是关键的?()A.无监督学习B.有监督学习C.强化学习D.以上都是5、在人工智能的发展中,可解释性是一个重要的研究方向。假设一个用于信用评估的人工智能模型,以下关于模型可解释性的描述,正确的是:()A.复杂的人工智能模型不需要具备可解释性,只要预测结果准确就行B.可解释性只对研究人员有意义,对于实际应用中的用户不重要C.通过特征重要性分析和可视化等方法,可以提高人工智能模型的可解释性,增强用户对模型决策的信任D.所有的人工智能模型都可以被完全解释清楚,不存在无法解释的黑盒部分6、人工智能中的多模态学习旨在融合多种不同类型的数据,如图像、文本、音频等。假设要开发一个能够同时理解视频中的图像内容和音频解说的系统,以下哪种多模态学习方法在整合和理解这些异构数据方面表现更为出色?()A.早期融合B.晚期融合C.注意力机制D.混合融合7、在人工智能的文本摘要生成中,以下哪种方法可能导致生成的摘要与原文主题偏离?()A.过度依赖原文中的高频词汇B.未能理解原文的语义结构C.忽略原文中的关键信息D.以上都有可能8、在人工智能的强化学习中,探索与利用的平衡是一个关键问题。假设一个智能体在一个未知的环境中学习,既要充分探索新的策略,又要利用已有的有效策略。以下哪种策略在平衡探索与利用方面表现较好?()A.ε-贪心策略B.基于置信上限的策略C.随机策略D.固定策略9、人工智能中的迁移学习方法可以提高模型的泛化能力。假设要将一个在大规模图像数据集上训练好的模型应用于特定领域的图像识别任务,以下关于迁移学习的描述,哪一项是不正确的?()A.可以将预训练模型的参数作为初始值,在新数据上进行微调B.能够利用已有的知识和特征,减少在新任务上的数据标注和训练时间C.迁移学习在任何情况下都能显著提高新任务的模型性能D.需要根据新任务的特点选择合适的预训练模型和迁移策略10、强化学习是人工智能中的一个重要领域,常用于训练智能体在环境中做出最优决策。假设一个机器人需要在一个充满障碍物的房间里找到通往目标位置的路径,同时避免碰撞。在这种情况下,以下关于强化学习的说法,哪一项是正确的?()A.智能体通过随机尝试不同的动作来学习最优策略B.奖励函数的设计对学习效果没有太大影响C.强化学习不需要考虑环境的动态变化D.一旦训练完成,智能体在新的环境中无需重新学习就能表现良好11、深度学习在近年来取得了显著的成果,特别是在图像识别和语音识别等领域。以下关于深度学习的叙述,不准确的是()A.深度学习是一种基于多层神经网络的机器学习方法,能够自动从数据中学习特征B.深度学习模型需要大量的训练数据和强大的计算资源来进行训练C.深度学习可以解决传统机器学习方法难以处理的复杂问题,如语义理解和情感分析D.深度学习模型的结构和参数一旦确定,就无法根据新的数据进行调整和优化12、在人工智能的研究中,算法的选择和优化至关重要。假设要解决一个复杂的优化问题。以下关于人工智能算法的描述,哪一项是不准确的?()A.遗传算法通过模拟生物进化过程来寻找最优解B.蚁群算法受蚂蚁觅食行为启发,适用于求解组合优化问题C.不同的算法适用于不同类型的问题,没有一种算法能够通用于所有情况D.算法的性能只取决于其理论复杂度,与实际应用中的数据特点和计算环境无关13、在人工智能的发展历程中,机器学习算法起到了关键作用。假设我们要开发一个能够预测股票价格走势的模型,需要处理大量的历史交易数据和财务报表等信息。以下关于选择机器学习算法的考虑,哪一项是最为重要的?()A.选择简单直观的线性回归算法,因为其易于理解和解释B.采用复杂的深度学习算法,如卷积神经网络,以捕捉数据中的复杂模式C.运用决策树算法,其能够生成易于理解的规则D.随机选择一种算法,碰碰运气14、在人工智能的语音识别领域,假设要开发一个能够准确识别不同口音和背景噪声下的语音识别系统,以下关于语音识别技术的描述,正确的是:()A.语音识别系统只需要对清晰、标准的语音进行训练,就能应对各种复杂情况B.增加训练数据中的口音和噪声样本可以提高系统在复杂环境下的识别能力C.语音识别的准确率只取决于声学模型,与语言模型无关D.现有的语音识别技术已经能够达到100%的准确率,无需进一步改进15、人工智能中的智能监控系统在安防、交通等领域发挥着重要作用。假设我们要在一个大型商场部署智能监控系统,以下关于智能监控的功能,哪一项是不准确的?()A.实时检测异常行为B.自动识别人员身份C.预测潜在的安全威胁D.智能监控系统不需要考虑隐私保护问题16、在人工智能的自动驾驶感知任务中,假设需要同时处理来自多个传感器(如摄像头、激光雷达、毫米波雷达)的数据。以下哪种融合方式能够更有效地综合利用多源信息?()A.早期融合,在特征层面进行融合B.中期融合,在决策层面进行融合C.晚期融合,在结果层面进行融合D.随机选择一种传感器的数据作为主要依据17、人工智能中的联邦学习技术旨在保护数据隐私的同时实现模型训练。假设多个机构想要联合训练一个人工智能模型,同时保护各自的数据隐私,以下关于联邦学习的描述,正确的是:()A.联邦学习可以在不共享原始数据的情况下,直接合并各机构的模型参数进行训练B.联邦学习过程中不存在通信开销和安全风险C.采用加密技术和模型参数交换的方式,联邦学习能够在保护数据隐私的前提下协同训练模型D.联邦学习只适用于小规模的数据和简单的模型,对于大规模和复杂的任务不适用18、人工智能中的语音识别技术在许多领域都有应用,如语音助手和智能客服。假设正在改进一个语音识别系统的性能,以下关于语音识别的描述,正确的是:()A.语音识别的准确率只取决于声学模型,语言模型对其影响不大B.环境噪声对语音识别的结果没有显著影响,系统可以自动过滤噪声C.不断优化声学模型和语言模型,并结合大量的语音数据进行训练,可以提高语音识别的准确率D.语音识别系统不需要考虑不同人的口音和语速差异,能够统一处理19、在人工智能的自然语言处理领域中,当需要开发一个能够准确理解和生成人类语言的智能系统,以用于智能客服回答各种复杂的问题时,以下哪种技术或方法通常是关键的基础?()A.词法分析B.句法分析C.语义理解D.语用分析20、人工智能中的自动规划和调度问题在许多领域都有应用,如生产制造、物流配送等。假设一个工厂要安排生产任务,需要考虑机器的可用性、订单的优先级和交货日期等约束条件。以下哪种自动规划算法在处理这种复杂的约束满足问题上最为高效?()A.A*算法B.遗传算法C.模拟退火算法D.蚁群算法21、人工智能中的异常检测技术可以在数据中发现不符合正常模式的样本。假设要在网络流量数据中检测异常行为,以下哪个因素对于检测算法的选择影响最大?()A.数据的维度B.异常行为的类型C.数据的分布特征D.计算资源的可用性22、人工智能中的模型压缩技术可以减少模型的参数数量和计算量。假设要在移动设备上部署一个深度学习模型,以下哪种模型压缩方法可能最有效?()A.剪枝B.量化C.知识蒸馏D.以上都有可能23、假设要开发一个能够理解人类情感和意图的人工智能助手,例如根据用户的情绪提供相应的服务,以下哪种技术和数据可能是关键的?()A.情感计算技术和情感标注数据B.意图识别技术和用户行为数据C.自然语言理解技术和多模态数据D.以上都是24、人工智能中的“胶囊网络(CapsuleNetwork)”的主要优势是?()A.对姿态和变形的鲁棒性B.减少参数数量C.提高训练速度D.增强可解释性25、人工智能在交通领域的应用包括智能交通管理、自动驾驶等。假设一个城市要实施智能交通系统。以下关于人工智能在交通中的应用描述,哪一项是错误的?()A.通过分析交通流量数据,优化信号灯控制,减少拥堵B.自动驾驶汽车可以提高交通安全,降低人为因素导致的事故发生率C.智能交通系统能够完全解决城市的交通问题,无需其他基础设施的改进D.利用人工智能预测交通需求,合理规划公共交通线路和站点26、在计算机视觉中,以下哪种任务需要对图像中的目标进行定位和分类?()A.图像分类B.目标检测C.图像分割D.图像生成27、人工智能中的知识表示和推理是实现智能系统的基础。假设要构建一个医疗诊断专家系统,能够根据患者的症状、检查结果等信息进行推理和诊断。以下哪种知识表示方法最适合用于表示复杂的医学知识和推理规则,并且便于系统的更新和维护?()A.产生式规则B.语义网络C.框架表示D.一阶谓词逻辑28、在人工智能的模型训练中,数据预处理是重要的环节。假设要训练一个用于图像识别的模型,以下关于数据预处理的描述,哪一项是不正确的?()A.数据清洗可以去除噪声和异常值,提高数据质量B.数据增强可以通过旋转、缩放等操作增加数据的多样性C.数据归一化可以将数据的值范围统一,有助于模型的训练和收敛D.数据预处理对模型的性能影响不大,可以忽略这一环节,直接进行模型训练29、人工智能在物流配送中的路径规划方面具有应用潜力。假设要为快递配送车辆规划最优路径,以下关于其应用的描述,哪一项是不准确的?()A.考虑交通状况、货物重量和配送时间等因素,优化路径选择B.利用启发式算法可以在较短时间内找到近似最优的配送路径C.人工智能规划的路径一定是最短的,不会受到任何突发情况的影响D.实时更新路况信息,动态调整配送路径,提高配送效率30、在强化学习中,“Q-learning”算法通过估计什么来进行决策?()A.状态价值B.动作价值C.策略D.奖励二、操作题(本大题共5个小题,共25分)1、(本题5分)运用Python的Keras库,构建一个长短时记忆网络(LSTM)来预测某城市未来一周的空气质量指数。收集相关的气象和污染数据,进行数据标准化和归一化处理,设置合适的超参数,如隐藏层单元数量和学习率,评估模型的预测效果。2、(本题5分)使用Python中的Keras库,搭建一个自动编码器(Autoencoder)模型,对图像数据进行压缩和重构。通过调整模型的结构和参数,提高图像的压缩和重构质量。3、(本题5分)使用Python的OpenCV库,实现对图像中的物体计数和尺寸测量。通过图像处理和形态学操作,准确计数和测量物体的大小。4、(本题5分)在Python中,运用蜂群算法解决一个函数优化问题。定义蜜蜂的行为和信息交流方式,展示算法的收敛情况。5、(本题5分)借助TensorFlow构建一个强化学习模型,让智能体学习在一个模拟的游戏环境中掌握游戏策略,如棋类游戏、射击游戏等。设计游戏规则和奖励机制,观察智能体在训练过程中的策略进化和游戏水平提升,评

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论