




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
AIGenerations:FromAI1.0toAI4.0
JiahaoWu1,HengxuYou2,JingDu,Ph.D.3*
1Ph.D.Student,Informatics,CobotsandIntelligentConstruction(ICIC)Lab,EngineeringSchoolofSustainableInfrastructure&Environment,UniversityofFlorida,Gainesville,FL32611;e-mail:
jiahaowu@
2Ph.D.Candidate,Informatics,CobotsandIntelligentConstruction(ICIC)Lab,EngineeringSchoolofSustainableInfrastructure&Environment,UniversityofFlorida,Gainesville,FL32611;e-mail:
you.h@
3Professor,Informatics,Cobots,andIntelligentConstruction(ICIC)Lab,EngineeringSchoolofSustainableInfrastructure&Environment,DepartmentofMechanical&AerospaceEngineering,DepartmentofIndustrial&SystemEngineering,UniversityofFlorida,Gainesville,FL32611(correspondingauthor);Email:eric.du@
ABSTRACT
ThispaperproposesthatArtificialIntelligence(AI)progressesthroughseveraloverlappinggenerations:AI1.0(InformationAI),AI2.0(AgenticAI),AI3.0(PhysicalAI),andnowaspeculativeAI4.0(ConsciousAI).EachoftheseAIgenerationsisdrivenbyshiftingprioritiesamongalgorithms,computingpower,anddata.AI1.0usheredinbreakthroughsinpatternrecognitionandinformationprocessing,fuelingadvancesincomputervision,naturallanguageprocessing,andrecommendationsystems.AI2.0builtonthesefoundationsthroughreal-timedecision-makingindigitalenvironments,leveragingreinforcementlearningandadaptiveplanningforagenticAIapplications.AI3.0extendedintelligenceintophysicalcontexts,integratingrobotics,autonomousvehicles,andsensor-fusedcontrolsystemstoactinuncertainreal-worldsettings.Buildingonthesedevelopments,AI4.0putsforwardtheboldvisionofself-directedAIcapableofsettingitsowngoals,orchestratingcomplextrainingregimens,andpossiblyexhibitingelementsofmachineconsciousness.ThispapertracesthehistoricalfoundationsofAIacrossroughlyseventyyears,mappinghowchangesintechnologicalbottlenecksfromalgorithmicinnovationtohigh-performancecomputingtospecializeddata,havespurredeachgenerationalleap.ItfurtherhighlightstheongoingsynergiesamongAI1.0,2.0,3.0,and4.0,andexplorestheprofoundethical,regulatory,andphilosophicalchallengesthatarisewhenartificialsystemsapproach(oraspireto)human-likeautonomy.Ultimately,understandingtheseevolutionsandtheirinterdependenciesispivotalforguidingfutureresearch,craftingresponsiblegovernance,andensuringthatAI’stransformativepotentialbenefitssocietyasawhole.
KEYWORDS:ArtificialIntelligenceEvolution;MachineLearning;ReinforcementLearning;LargeLanguageModels;AIEthicsandGovernance
I.INTRODUCTION
ArtificialIntelligence(AI)hasexperiencedatransformativeevolutionoverthelastseventyyears,evolvingfromitsnascentstageoftheoreticalformulationstoitscurrentstatusasacornerstoneoftechnologicaladvancement[1].Initially,thefieldwasdominatedbyintellectualexplorationsintosymbolicreasoning,knowledgerepresentation,andtherudimentaryprinciplesofmachinelearning[2].Theseearlystagesweremarkedbyafocusonconceptualbreakthroughs,layingthegroundworkforwhatAIcouldpotentiallyachieve.Ascomputationalcapabilitiesexpandedanddatasourcesproliferated,AItransitionedfromtheoreticalmodelstopracticalapplicationscapableoflearningfrompatternsandmakingprecisepredictions[3].Thelasttwodecades,however,havewitnessedanunprecedentedaccelerationinAIdevelopment,propellingthefieldintorealmsthatsurpasseventhemostoptimisticprojectionsofitsearlypioneers.
2
Despiteremarkablesuccessesinareaslikenaturallanguageprocessing,computervision,andlarge-scaledataanalytics,AIcontinuestofacechallengesininteractingseamlesslywithcomplex,dynamicreal-worldenvironments.ThisongoingstrugglesignalsanemergingphaseinAI’sevolution,markingashiftfromsystemsthatprimarilyprocessandpredictinformationtoonesthatcanplan,decide,andact,usheringinnewgenerationsofAI:InformationAI(AI1.0),AgenticAI(AI2.0),PhysicalAI(AI3.0)andConsciousAI(AI4.0).ThisclassificationnotonlyclarifiestheconceptualtransitionswithinthefieldbutalsohelpsdelineatetheevolutionofAIcapabilitiesfromdataextractiontomakingautonomousdecisionsindigitalrealms,andnowtoengagingdirectlywiththephysicalworld.
Understandingthesetransitionsisessential,notjustfromatechnologicalstandpointbutalsoforgraspingthesocietalandeconomicimplicationsofAI.EachphaseofAIhasbeenshapedbydistincttechnologicaldriversandbottlenecks:theearlyperiodwaslimitedbythelackofadvancedalgorithmsandcomputationalframeworks[4];theadventofpowerfulGPUsaround2012significantlyshiftedthelandscape,enablingmorecomplexneuralarchitectures[5];andtoday,thechallengehasmovedtowardsharnessingdomain-specific,high-qualitydatatofeedintothesesophisticatedsystems[6].Recognizingtheseshiftsiscrucialforstakeholders,includingpolicymakers,researchers,andindustryleaders,whomustnavigatetheethical,regulatory,andtechnicalcomplexitiesintroducedbyadvancedAIsystems.
TheobjectiveofthisreviewistoprovideacomprehensiveretrospectiveonthemilestonesthathavedefinedAI’sprogress.Bytracingthelineageofalgorithmicinnovations,increasesincomputingpower,andenhancementsindatautilization,weaimtoilluminatethesignificantmomentsthathaveshapedAIfromitsinceptiontoitscurrentstate.ThisexplorationisstructuredaroundtheAI1.0toAI4.0framework,illustratinghoweachgeneration’sdefiningfeaturesandlimitationscorrespondtobroaderhistoricalphasesfromapproximately1950tothepresent.Indoingso,wewillalsocontemplatethefuturetrajectoryofAI,consideringthepotentialtechnicalchallenges,societalimpacts,andstrategicdirectionsthatcoulddefinethenextphasesofAIresearchandapplication.
ThisarticleisstructuredtofirstrevisitthehistoricalfoundationsofAI,emphasizingtheshiftsinprimarydriversfromalgorithmstocomputingpowertodata.Wethendelveintothespecificcharacteristics,achievements,andlimitationsofAI1.0,AI2.0,AI3.0,andAI4.0.Followingthis,weexploretheconvergenceandfutureoutlookofAI,highlightingthesynergiesamongthefourgenerationsandoutliningthegrandchallengesthatlieahead.Finally,weconcludewithasynthesisofkeyinsightsandproposefuturedirectionsforsustainedprogressinthefield,aimingtobothinformandinspirecontinuedinnovationandthoughtfulintegrationofAIintoourdailylivesandsocietalstructures.
II.HISTORICALFOUNDATIONSOFAI
2.1Phase1(1950s-2010s):AgeofAlgorithmicInnovations
Sincethe1950s,AIhasadvancedthroughadynamicinterplayamongthreecoreingredients:algorithms,computingpower,anddata[7].Althoughthesethreefactorshavealwaysshapedthefield,theyhavenotalwayscontributedequallyateverystage.Intheearlydecades,thelimitingfactorwasinnovationinalgorithms.Frommid-centurydebatesaboutthefeasibilityofmachineintelligencetotheemergenceofexpertsystemsandneuralnetworks,itwasclearthatconceptualbreakthroughswoulddetermineAI’sboundaries[8].Meanwhile,althoughdataandcomputingpowerwereimportant,theyplayedmoresupportiveroles.Gradually,asnewhardwarearchitecturesappearedandaslarge-scaledatasetsbecamemoreaccessible,thefocusshiftedtowardharnessingimmensecomputationalcapabilityandvastamountsofinformation.
Fromtheoutset,researcherswereenthralledbythequestionofwhethermachinescouldtrulythink.
AlanTuring’spioneeringpaper[9]setthestage,posingthefamous“imitationgame”asalitmustestforintelligence.In1956,theDartmouthConference[10]formallyintroducedtheterm“ArtificialIntelligence”andlaidouttheboldpropositionthattheessenceofhumanintelligencecouldbepreciselydescribedandreplicatedinmachines.Earlysystems,suchastheLogicTheoristandtheGeneralProblemSolver[2,11]underscoredthatsymbolicreasoningcouldbecomputationallyrealized.Theseproof-of-conceptattempts
3
highlightedthecentralpremiseofthatera:ifwecoulddevisetherightalgorithms,computersmightreasonandsolveproblemswithnear-humanefficacy.
Bythe1960sand1970s,astrongemphasisonsymbolicAItookhold.InfluentialworksbyJohnMcCarthy[12]introducedLISPasalanguagesuitedtosymbolicprocessing,whileMinskyandPapert’s[13]criticalanalysisofsingle-layerperceptionscontributedtoapauseinneuralnetworkresearch,pushingmanyresearcherstowardknowledge-basedor“expert”systems.MilestonesliketheDENDRALproject[14]andMYCIN[15]showcasedhowcarefullycuratedrulesetscouldguideproblem-solvinginspecializeddomains.Thesesystemsillustratedthepowerofalgorithmicdesigninareassuchasmedicaldiagnosisorchemicalanalysis,evenwhenreal-worlddatawerescarceandcomputationalresourceslimited.
Neuralnetworksreboundedinthe1980swithworkonHopfieldnetworks[16](Fig.1)and,crucially,therediscoveryofbackpropagation[17].Thisgaveresearchersfreshinsightintohowmachinesmightlearnpatternsfromdata.Thoughthepotentialoftheseconnectionistapproacheswasclear,theyoftenstalledbecauselargedatasetswerenotwidelyavailableandspecializedhardwaredidnotyetexist.Evenso,foundationalcontributionslikeLeCun,etal.[18]applicationofconvolutionalneuralnetworkstohandwrittendigitrecognitionlaidthegroundworkforwhatwouldbecomemoderndeeplearning.
Fig.1TheHopfieldnetworks[16]introducedcontent-addressablememoryinneuralnetworks,markinga
majormilestoneinconnectionisminAI.
Bythe1990s,certainalgorithmicachievementshintedatdeeperarchitecturescapableoftacklingincreasinglycomplextasks.TheproposalofLongShort-TermMemory(LSTM)networkseffectivelyaddressedthevanishinggradientproblem,openingpossibilitiesformodelingsequentialdatamoreaccurately[19].However,therealtransformativemomentemergedaround2012,whenKrizhevsky,Sutskever,andHintondemonstratedthatImageNet-scaledatasetsandhigh-performanceGPUscoulddramaticallyimproveadeepneuralnetwork’sabilitytoclassifyimages,i.e.,theAlexNet[20](Fig.2).Althoughthiswatershedeventisoftenviewedasthedawnofthe“deeplearningera,”itcouldnothavehappenedwithoutthealgorithmicgroundworklaidovertheprecedingdecades.
Fig.2AlexNet[20]marksthebeginningoflarge-scale,GPU-acceleratedconvolutionalneuralnetworks
forhigh-performanceimageclassification
4
2.2Phase2(2010s-Present):TheComputeRevolutionandDeepLearningRenaissance
AdramaticshiftinAIresearchtookholdaround2012,whenmountingcomputationalcapacitybegantoeclipsealgorithmicnoveltyastheprincipalengineofprogress.Whilethecoreconceptsunderlyingneuralnetworkshadbeenpresentsinceatleastthe1980s,itwasthewidespreadadoptionofGeneral-PurposeGraphicsProcessingUnits(GPUs)thatignitedwhatisoftentermedthe“deeplearningrenaissance”(Fig.3).WhenKrizhevsky,etal.[20]leveragedGPUstotrainalargeconvolutionalneuralnetworkfortheImageNetcompetition,theydecisivelydemonstratedhowparallelizedcomputingcouldunearthperformancegainspreviouslyunachievablewithsingle-threadedCentralProcessingUnits(CPUs).Thisturningpointcatalyzedawaveofresearchacrossmachinevision,speechrecognition,andnaturallanguageprocessing,withgroupsatGoogle,Microsoft,Baidu,andmanyacademicinstitutionsallracingtoscaleupnetworkarchitectures[21-23].Theessenceofthisperiodlayintheconvictionthat“biggerisbetter”,whetherintermsofmodelparameters,datasetsize,orsheercomputationalresources.Consequently,muchofthestate-of-the-artprogresshingedonharnessingspecializedhardware:firstGPUs,thentensorprocessingunits(TPUs)andothercustomaccelerators,tochurnthroughever-growingdatasetsinshortertrainingcycles.
Fig.3TheCUDAarchitecturepioneeredgeneral-purposeGPUcomputing,revolutionizingparallel
processingandacceleratingAIbreakthroughs.
Bythemid-2010s,theexplosiveriseofdeepreinforcementlearning[24]andbreakthroughsingame-playingAI,suchasAlphaGo[25],underscoredthatnotonlycouldAImodelslearnrepresentationsfrommassivedata,buttheycouldalsodiscoverwinningstrategiesthroughlarge-scalesimulations.Nevertheless,thepredominantrealmforthesesystemsremainedresolutelydigital.Whetherclassifyingimages,translatingtext[26,27],orplayingcomplexboardandvideogames,AIwasstilloperatinginanessentiallyinformationalcontext.Althoughdataavailabilitywascriticalandalgorithmslikeconvolutionalandrecurrentneuralnetworkscontinuedtoimprove,sheercomputationalpowerwasoftenthedecidingfactorinachievingsuperiorperformance.Researchersobservedemergentpatternsinscalinglaws[28],revealingthatlargermodelstrainedonlargerdatasetscouldunlockqualitativelynewcapabilities.SystemslikeGPT-2[29]andGPT-3[30]illustratedthisphenomenonvividlybydemonstratingastrikingabilitytogeneratehuman-liketextonceparametercountsandtrainingdatareachedcertainthresholds.Foralltheirsophistication,thesemodelscontinuedtoresideinthedigitalworld,makingthemrefinedandpowerfulversionsfocusedonbigdataanalyticsandpatternrecognitionatanunprecedentedscale.Evenso,theendofthisphasebegantohintatatransitiontowardgreaterautonomyanddecision-makingindigitalcontexts,anemerginghallmarkofagenticAI.Whilemanysystemsarestillcenteredonclassificationorprediction,theriseofadvancedreinforcementlearningagentsabletoadaptstrategieswithinsoftwareecosystemsforeshadowedanewkindofagency.Byapproximately2024,thescholarlyandcommercialdrivetodevelopgoal-directedvirtualassistants,automatedresourceallocationtools,andmulti-agentsimulationssuggested
5
thatthechiefchallengewasnolongerpurelytolabeldataaccurately,buttoactindigitalenvironmentsinwaysthattranscendedtraditionalsupervisedlearning[31].ThisgrowingdesireforagenticAIremainedtiedtoabundantcomputingpower,yetitbegantorevealnewdependenciesonspecializeddatastreamsandreal-timefeedbackloops[32].ItsetthestageforthenextgenerationofAI,inwhichcomputationalneedswouldremainvital,butdataandcontext-specificknowledgewouldbecomeevenmorepivotalinenablingtrulyautonomous,adaptivesystems.
2.3Phase3(2024–Foreseeablefuture):Data-CentricParadigms
Inthewakeofaperioddefinedbydramaticincreasesincomputationalhorsepower,thefocalpointofAIadvancementhasshiftedonceagain.WherePhase2thrivedonscalingneuralnetworksthroughunprecedentedparallelprocessing,Phase3acknowledgesthatdata,especiallyspecialized,high-qualitydata,isfrequentlythegreatestobstacle.Researchershavediscoveredthatever-largermodelsalonedonotguaranteesuccessiftheylackcontext-richtrainingsets.Consequently,asurgeinlarge-scale,domain-specificdata-collectioneffortshasemerged,reshapingthefield’spriorities.Projectsthataggregatespecializedmedicaldatafordiagnosticsystems[33],simulatehigh-fidelityenvironmentsforroboticsandautonomousvehicles[34,35],orcompiledeepreinforcementlearningbenchmarkswithrealisticconstraints[36,37]attesttotheideathatharnessingrobustdatasetscanbeasdeterminativeasalgorithmicingenuityorrawcomputationalpower.
Despitethecontinuedimportanceofparallelcomputingandinnovativearchitectures,manycutting-edgesuccessesnowhingeondatastrategy.Researchershavechampioned“data-centricAI”[38],arguingthatrefiningtrainingsets,removingbiases,fillingincoveragegaps,orgeneratingsyntheticdatatohandleedgecases,oftenyieldsmoreimprovementthanaddinglayerstoaneuralnetwork.Thisphilosophyiscloselyrelatedtotheriseoffoundationmodels[39],whicharevastneuralarchitecturesthatcanbeadaptedtomyriadtasks,butrequiremassive,carefullycuratedcorporatorealizetheirfullpotential.Asdatabecomesthetruebottleneck,teamsmustgrapplewiththelogisticalandethicalchallengesofcollecting,storing,andlabelingit,aswellaswithprivacy,consent,andrepresentationissues.
Withinthisphase,AI’stransitionfrominformationalanalysistoagenticdecision-makingbecomesincreasinglytangible.Reinforcementlearningagentsnotonlyplanandlearnincomplexdigitalworldsbutalsobegintobridgeintoreal-worldapplications,wheretheymustreasonaboutnoisysensors,hardwareuncertainties,andhumancollaboration.PhysicalAI,exemplifiedbyadvancedrobotics,autonomousdrones,andintegratedcyber-physicalsystems,movesbeyondtheboundariesofsimulatedorpurelyinformationalspaces.Progressinroboticgraspingandmanipulation[35,40],self-drivingvehicles[41],androboticsurgery[42]signalshowthesesystemscanrobustlyinteractwiththeenvironment,handledynamicconditions,andlearnfromcontinuousfeedback.Thus,thehallmarkofthisnewphaseistherecognitionthatdataunlocksthefullerpotentialofagenticAIindigitalecosystems,aswellasphysicallyembodiedintelligenceintherealworld[43].
III.AIGENERATIONS
ThehistoricalreviewofAIunderscoresapivotalgenerationalshiftandevolutioninAIparadigms,callingforanovelframeworkforunderstandingandclassifyingAI.Inthiscontext,weavoidthetraditionaltechnicaldefinitionsthatcategorizeAIstrictlybytheiroperationaloralgorithmiccharacteristics.Instead,ouranalysisseekstounderstandAIthroughitsintrinsicqualities:Whatarethey?Whataretheydesignedtoachieve?Andwhataretheirconsistentbehavioralpatterns?Accordingly,weproposeataxonomythatidentifiesfourdistinctgenerationsofAI:AI1.0,characterizedasInformationAI,whichfocusesondataprocessingandknowledgemanagement;AI2.0,orAgenticAI,whichencompassessystemscapableofautonomousdecision-making;AI3.0,knownasPhysicalAI,whichintegratesAIintophysicaltasksthroughrobotics;andthespeculativeAI4.0,termedConsciousAI,whichpositsthepotentialemergenceofself-awareAIsystems.ThisclassificationaimstoprovideamoredetailedperspectivereflectingAItechnologies'complexevolution.Fig.4illustratesthegenerationalevolutionofartificialintelligence(AI)fromAI1.0(InformationAI)toAI4.0(ConsciousAI).
6
Fig.4TheEvolutionofAIGenerationsfromAI1.0toAI4.0
3.1AI1.0:InformationAI
TheconceptofAI1.0capturesastageinwhichcomputationalsystemsexcelatclassifyingandinterpretinginformationbutremainconfinedtoanalysesofstaticdata,ratherthanengaginginactivedecision-makingorreal-worldmanipulation.Fundamentally,AI1.0focusesonpatternrecognitionandinformationprocessing,techniquesthathavepoweredbreakthroughsincomputervision,naturallanguageprocessing(NLP),andrecommendationsystems.Althoughtheseachievementsmightseemcommonplacenow,theyrepresentthefruitsofdecadesofresearchdrivenbybothmathematicalinnovationandtheincreasingavailabilityofdigitaldata.
ManyofthecoreideasunderpinningAI1.0tracebacktoearlyneuralnetworkresearchandstatisticalmachinelearning.FromRosenblatt’sperceptroninthelate1950stothebackpropagationalgorithmspopularizedbyRumelhart,Hinton,andWilliams[17],thesedevelopmentslaidthegroundworkfordata-drivenlearningbydemonstratingthatmachinescoulduncoverpatternswithinexamplesratherthanrelyingsolelyonhand-codedrules.Classicapproachestosupervisedlearning,suchasSupportVectorMachines(SVMs)formalizedbyCortesandVapnik[44],laterprovedtobeformidablecontendersintasksrangingfromhandwritingrecognitiontotextclassification.Progressincomputationalhardware,alongwiththeaccumulationofsizeablelabeleddatasets,eventuallymadeitfeasibletotraindeeperandmorecomplexneuralnetworks,culminatinginmilestonesuccessesincomputervision.AwatershedmomentcamewhenKrizhevskyetal.[20]’sAlexNetleveragedparallelizedGPUtrainingtoconquertheImageNetchallenge,revealinghowconvolutionalarchitecturescouldoutperformallpriormethodsbylearningincreasinglyabstractfeaturesfromrawimagepixels.
Innaturallanguageprocessing,theinfluenceofAI1.0canbeseeninearlysequencemodelsandstatisticallanguagemodeling.AlthoughthesesystemsoftenreliedonsimplerMarkovorn-gramassumptions,theysetthestageformoreadvancedarchitecturesbyhighlightingthenecessityofabundanttextcorpora.Meanwhile,recommendationengines,suchasthosepopularizedbytheNetflixPrize[45],underscoredhowanalyzinglarge-scaleuserinteractionscoulddriveconsumerengagementonstreamingande-commerceplatforms.Today,manycompaniesstillrelyonthesecoreAI1.0technologies,sometimesenhancedwithshallowneuralarchitectures,tofilterspam,ranksearchresults,recommendproducts,ordetectfraudulenttransactions.Indeed,forstructuredorsemi-structureddata,thesepattern-recognitionapproachesremainbothcost-effectiveandhighlyaccurate.
7
Despitetheirdeepsocietalimpact,AI1.0systemsgenerallylackautonomyorcontextualawarenessassociatedwithsubsequentgenerationsofAI.Theyexcelatpredictingoutcomeswhenprovidedwithsubstantialtrainingdata,buttheyrequirearelativelystableenvironmentandbenefitmostfromhumansupervisionindatacurationanddecision-making.Performanceoftendegradesiftheinputdistributionshiftssignificantly,avulnerabilityillustratedwhenfacerecognitionmodelsfalteronunderrepresentedgroupsorwhenlanguagemodelsencounterdomain-specificjargon.WhiletheconsiderablesuccessofAI1.0isundeniable-transformingindustriesfromfinancetohealthcarethroughimprovedanalyticsanddiagnostics
-itslimitationslieinitsreactivenature.Patternrecognitionaloneoffersnoguaranteeofproactivedecision-making,real-timeadaptation,orsafedeploymentindynamicsettings.Theseconstraints,whilehardlytrivial,becamethespringboardforfurtherdevelopmentsinAI2.0and3.0,inwhichsystemsaimtolearn,plan,andevenactwithinuncertaindigitalorphysicalworlds.
3.2AI2.0:AgenticAI
AdefiningcharacteristicofAI2.0istheemergenceofsystemscapableofautonomousdecision-makingwithindigitalcontexts.Ratherthanmerelyclassifyingstaticdata,theseagentsadapttheirbehaviortoachievegoals,oftenincomplexorcontinuouslyevolvingenvironments.Reinforcementlearning(RL)hasplayedapivotalroleinthisshift,enablingmachinestolearnstrategiesbyinteractingwithsimulatedorreal-worldsettingsandreceivingfeedbackintheformofrewardsorpenalties.PioneeringworkondeepRL[24]andsubsequentachievementssuchasAlphaGo[25]underscoredhowsufficientlypowerfulalgorithmsandamplecomputingresourcescouldsurpasshumanperformanceintasksthatdemandlong-termplanningandstrategicadaptation.Acommonthreadamongthesesystemsistheconceptofgoal-directedplanning:softwareagentsallocateresources,scheduletasks,orcoordinatewithotheragents,leveragingsophisticatedRLorhybridRL-languagemodelalgorithms[30]thatintegratescontextualunderstanding(Fig.5).
Fig.5AgenticAIusesadaptivepolicies,enablingautonomousactionandcontinuousself-improvement.
AlthoughtheconceptualleapfromAI1.0’spatternrecognitiontoAI2.0’sagenticbehaviormightappearseamless,itdemandsauniqueconfluenceoftechnicalelements.Computingpoweriscrucialbecauseagenticsystemsfrequentlyrequirereal-timeinferenceandtheabilitytoruncomplexsimulations,whethertheyinvolveamarketplace,amultiplayerenvironment,ortherobustschedulingofcloudresources.ThepursuitofthesecomputationallyintensivetaskshasspurredthedevelopmentofGPUclusters,tensorprocessingunits(TPUs),andotherspecializedacceleratorsdesignedforiterativetrainingandlow-latencydecision-making.
Alongsiderawcomputing,datanowshiftstowardcontextual,time-varyinginputs.Insteadofstaticimagesets,thesesystemsofteningeststreamsoflogs,marketquotes,eventtriggers,oruserinteractions.
8
Traininganagenttotradestocksautomaticallyortooperatearecommendationengineinreal-timerequiresongoingingestionofbehavioraldataandacapacitytoadaptasmarketconditionsoruserpreferencesevolve.Inparallel,algorithmsforplanningandmulti-agentcoordinationcontinuetomature.RLframeworkshavegrownmorerefined,incorporatinghierarchicalstrategies[46],policyoptimizationmethods[47],andcombinationswithlargelanguagemodelstogeneratemoreadaptiveandcontext-awaredecisions.
PracticalapplicationsofAI2.0alreadyabound,evenifmanyarenotlabeled“reinforcementlearning”byname.Automatedtradingsystemsinfinanceexemplifyhowagentsmakehigh-frequencydecisionsunderuncertainty,guidedbystreamingdatafeeds.Recommendationsystems,evolvingfromstaticcollaborativefiltering,increasinglyincorporatefeedbackloopstoadaptsuggestionsinrealtime,improvinguserengagementacrosse-commerceandmediaplatforms.Digitalassistantsandsoftwareschedulers,whilenotyetubiquitouslyagentic,offerglimpsesofafuturewhereAIhandlestaskslikeresourceallocation,taskdelegation,andmulti-agentcoordinationwithincorporateorconsumersoftwareeco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租车公司的合同范本
- 推广武家合同范本
- 装饰报建合同范本
- 个人医院收购合同范本
- 托盘厂房转让合同范本
- 2025年春一年级语文上册 10 古诗二首(+公开课一等奖创新教案+素材)
- 项目运行与管理培训
- 项目质量管理
- 预防保健科质量改进项目
- 备考2025年成人学位英语模拟测试题及答案解析5
- 华润集团BSC6S与战略管理
- 油气集输与矿场加工
- 手术中获得性压力性损伤护理课件
- 2024可信数据服务多方数据价值挖掘体系框架
- 故事绘本一园青菜成了精
- 卫健系统消防安全培训课件
- 转氨酶升高患者护理查房
- 读后续写:万能升华主旨句3-脱险型(解析版)-新高考英语读后续写满分攻略
- 初中英语导学案名词 公开课教学设计
- 个人业绩相关信息采集表
- 模具维护保养记录表
评论
0/150
提交评论