




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6节空间向量与线面位置关系考试要求1.了解空间向量的概念、空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.【知识梳理】1.空间向量的有关概念名称定义空间向量在空间中,具有______和______的量相等向量方向________且模________的向量相反向量方向________且模________的向量共线向量(或平行向量)表示空间向量的有向线段所在的直线互相________或________的向量共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得____________________.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在________的有序实数对(x,y),使p=________.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=____________,其中,{a,b,c}叫做空间的一个基底.3.空间向量的数量积(1)两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是________,若〈a,b〉=eq\f(π,2),则称a与b_____________,记作a⊥b.(2)两向量的数量积:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积,记作a·b,即a·b=____________________.(3)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b__________________________共线a=λb(b≠0,λ∈R)________________________垂直a·b=0(a≠0,b≠0)________________________模|a|________________________夹角〈a,b〉(a≠0,b≠0)cos〈a,b〉=eq\f(a1b1+a2b2+a3b3,\r(aeq\o\al(2,1)+aeq\o\al(2,2)+aeq\o\al(2,3))·\r(beq\o\al(2,1)+beq\o\al(2,2)+beq\o\al(2,3)))5.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l________________,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.6.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为u1,u2l1∥l2u1∥u2⇔u1=λu2l1⊥l2u1⊥u2⇔____________直线l的方向向量为u,平面α的法向量为nl∥αu⊥n⇔____________l⊥αu∥n⇔u=λn平面α,β的法向量分别为n1,n2α∥βn1∥n2⇔n1=λn2α⊥βn1⊥n2⇔____________[常用结论与微点提醒]1.空间向量的线性运算和数量积运算可类比平面向量的线性运算和数量积运算.2.空间向量的坐标运算和坐标原点的选取无关.3.实数0和任意向量相乘都为零向量.4.实数与空间向量可以进行数乘运算,但不能进行加减运算.5.在利用eq\o(MN,\s\up6(→))=xeq\o(AB,\s\up6(→))+yeq\o(AC,\s\up6(→))证明MN∥平面ABC时,必须说明M点或N点不在平面ABC内.【诊断自测】1.思考辨析(在括号内打“√”或“×”)(1)直线的方向向量是唯一确定的.()(2)若直线a的方向向量和平面α的法向量平行,则a∥α.()(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.()(4)若a·b<0,则〈a,b〉是钝角.()(5)若两平面的法向量平行,则不重合的两平面平行.()2.(选修一P12例1改编)如图,M是四面体OABC的棱BC的中点,点N在线段OM上,点P在线段AN上,且MN=eq\f(1,2)ON,AP=eq\f(3,4)AN,则eq\o(OP,\s\up6(→))=________(用向量eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→))表示).3.(选修一P22T2改编)已知a=(2,-1,3),b=(-4,2,x),且a⊥b,则x=________.4.正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________.考点一空间向量的运算及共线、共面定理例1(1)(2023·北京海淀区质检)在三棱柱A1B1C1-ABC中,D是四边形BB1C1C的中心,且eq\o(AA1,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,eq\o(AC,\s\up6(→))=c,则eq\o(A1D,\s\up6(→))等于()A.eq\f(1,2)a+eq\f(1,2)b+eq\f(1,2)c B.eq\f(1,2)a-eq\f(1,2)b+eq\f(1,2)cC.eq\f(1,2)a+eq\f(1,2)b-eq\f(1,2)c D.-eq\f(1,2)a+eq\f(1,2)b+eq\f(1,2)c(2)(多选)下列说法中正确的是()A.|a|-|b|=|a+b|是a,b共线的充要条件B.若eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))共线,则AB∥CDC.A,B,C三点不共线,对空间任意一点O,若eq\o(OP,\s\up6(→))=eq\f(3,4)eq\o(OA,\s\up6(→))+eq\f(1,8)eq\o(OB,\s\up6(→))+eq\f(1,8)eq\o(OC,\s\up6(→)),则P,A,B,C四点共面D.若P,A,B,C为空间四点,且有eq\o(PA,\s\up6(→))=λeq\o(PB,\s\up6(→))+μeq\o(PC,\s\up6(→))(eq\o(PB,\s\up6(→)),eq\o(PC,\s\up6(→))不共线),则λ+μ=1是A,B,C三点共线的充要条件感悟提升1.(1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.(2)解题时应结合已知和所求观察图形,正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及平行四边形法则,就近表示所需向量.2.(1)对空间任一点O,eq\o(OP,\s\up6(→))=xeq\o(OA,\s\up6(→))+yeq\o(OB,\s\up6(→)),若x+y=1,则点P,A,B共线.(2)已知eq\o(MA,\s\up6(→)),eq\o(MB,\s\up6(→))不共线,证明空间四点P,M,A,B共面的方法.①eq\o(MP,\s\up6(→))=xeq\o(MA,\s\up6(→))+yeq\o(MB,\s\up6(→)).②对空间任一点O,eq\o(OP,\s\up6(→))=eq\o(OM,\s\up6(→))+xeq\o(MA,\s\up6(→))+yeq\o(MB,\s\up6(→))或eq\o(OP,\s\up6(→))=xeq\o(OM,\s\up6(→))+yeq\o(OA,\s\up6(→))+zeq\o(OB,\s\up6(→))(x+y+z=1)即可.③eq\o(PM,\s\up6(→))∥eq\o(AB,\s\up6(→))(或eq\o(PA,\s\up6(→))∥eq\o(MB,\s\up6(→))或eq\o(PB,\s\up6(→))∥eq\o(AM,\s\up6(→))).训练1已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足eq\o(OM,\s\up6(→))=eq\f(1,3)(eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))).(1)判断eq\o(MA,\s\up6(→)),eq\o(MB,\s\up6(→)),eq\o(MC,\s\up6(→))三个向量是否共面;(2)判断点M是否在平面ABC内.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考点二空间向量的数量积及其应用例2如图,正四面体ABCD(所有棱长均相等)的棱长为1,E,F,G,H分别是正四面体ABCD中各棱的中点,设eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,eq\o(AD,\s\up6(→))=c,试采用向量法解决下列问题:(1)求eq\o(EF,\s\up6(→))的模长;(2)求eq\o(EF,\s\up6(→)),eq\o(GH,\s\up6(→))的夹角.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________感悟提升由向量数量积的定义知,要求a与b的数量积,需已知|a|,|b|和〈a,b〉,a与b的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b计算准确.训练2如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.(1)求AC1的长;(2)求BD1与AC夹角的余弦值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考点三利用空间向量证明平行与垂直例3如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.(1)求证:平面A1B1D⊥平面ABD;(2)求证:平面EGF∥平面ABD.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________感悟提升1.利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及直线、平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学法制知识竞赛
- 育婴师互动教育方式试题及答案
- 2024年第3季度砖体工施工图纸变更责任划分合同模板
- 扫雪铲冰工作总结
- 成都精装房屋出租合同
- 网约车租赁合同
- 2025餐饮连锁店特许经营合同协议书范本
- 苗木买卖合同
- 学习用品公益捐赠合同书
- 二零二四年份二月跨境电力资源权益离婚分割操作指南
- 霸王茶姬营销策略分析报告
- 医院产科培训课件:《正常分娩》
- 个人征信承诺书
- 天翼云高级解决方案架构师认证考试复习题库(含答案)
- 王阳明后学研究综述
- 中国女性生理健康白皮书
- 数据析及DPS数据处理系统讲解学习
- 高一语文学法指导(绝对经典)课件
- 废旧综合材料手工(幼儿园)PPT完整全套教学课件
- 中班数学:蔬菜宝宝送回家 课件
- 07J902-3 医疗建筑(卫生间、淋浴间、洗池)
评论
0/150
提交评论