固态电解质理论配方设计与实验_第1页
固态电解质理论配方设计与实验_第2页
固态电解质理论配方设计与实验_第3页
固态电解质理论配方设计与实验_第4页
固态电解质理论配方设计与实验_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Adesignermaterialsapproach

forsolidbatterymaterials:theoryvs.experiments

Dr/ProfGuoshengShao

StateCentreforInternationalCooperationonDesignerLow-carbon&

EnvironmentalMaterials(CDLCEM)低碳环保材料智能设计国际联合实验室

ZhengzhouUniversity郑州大学

ZhengzhouMaterialsGenomeInstitute(ZMGI)

--KeyInnovationOrganizationofHenanProvince

Safetyisagreatconcernformetalionbatteries

•Everincreasingdemandsofmetalionbatteriestosustainalow-carbonworld

•Fireaccidentsinvolvingnumerouslargescalebatterysystemsandelectricalvehicles

•HigherenergybatterieswithhigherVOCandenergydensitiesareevenlesssafe

•Solidelectrolytesarerecognizedtobefundamentallypromising

Necessarytobeabletoformulatenewmaterialsmoreefficientlyatloweredcosts:sustainableresources,greenandcheapmatter.

MSUP-adesignerapproach

•configurations(shape,size,interface/surface)

Need

•properties(mechanical,physical,chemical)

•functionalities(electronic,photonic,magnetic,biological,catalytic…)

系统试验-》可靠表征--》理论演绎

Tosee

Tom

Theory

MSUP

ake

Tounderstand

Data

Experiment

Materialsscience

•compositions

•microstructures

Topredict

•properties/functionalities

理论先行-》实验验证--》工艺优化

DFTbasisfordesigningbatterymaterials

ApproximationsforDFTonlyhiddeninXCfunctionals

Localfunctionals(LDA,GGA)largelydependabletostructure-energypropertiesatthegroundstate(zerokelvin,crystallinephases),e.g.PBEdescriptionofGGA

Entropy(vibrational)fordynamicallystablephasesdeterminedbygroundstatebinding

Electrochemicalpropertiesdictatedbycohesiveenergy(bindingenergyfromfreeatomsinlargevacuum).Thermalcontributionforbatterymaterialsrathertrivial

(energyformeltingonlyaround10%ofthecohesiveenergy)

A→B=一1/z.{EtotalLix+ΔxΠ一EtotalLixΠ/Δx一EtotalLi}

ReasonablyacceptablehybridXCavailableforbandstructures,e.g.HSE06,albeitbeingawareofnoubiquitousnon-localformalism(Asanextremecase,noneof

anyoneofthenon-localsiscapabletocopewithcopperoxidesCuO,Cu2O!)

IntegratedDFTMaterialsGenomeApproach

forsolidbatterymaterials

1.Cubicargyroditehali-chalcogenidesLi6PA5I

Globalsearchforstablestructures:energeticanddynamicalstabilities

(a)Li6PS5I,(b)Li6PSe5I,(c)Li6PTe5I,(d)Li6PSO4I,(e)Li6PSeS4I,and(f)Li6PTeS4I

(a)Li6PS5I,(b)Li6PSe5I,(c)Li6PTe5I,(d)Li6PSO4I,(e)Li6PSeS4I,(f)Li6PTeS4I,(g)Li6PS5Cl,(h)Li6PTeS4Cl,and(i)Li6PTe5Cl.

TuningAlloyingforsuperbionicconductivity:

TeforS,ClforI,excessLi@charge-neutrality

Li6PS5ClLi6PTe5Cl

Li6PS4TeCl

J.Mater.Chem.A,2017,5,21846-21857

Experimentalrealization

σ=D=D0exp(−)=exp(−

J.Mater.Chem.A,2018,6,19231-19240

Latticesoftening–superbionicconductivity

--“Grainboundaryresistance”conceptquestionable

Gradedelectrolytebufferstoavoidinterfacialreactions

xnLi6PS5-xOxCl

Li6PO5Cl|Li0.25MnO2interfacialstructures(a)beforeand(b)afterAIMD

calculation.(c)Li+diffusionpathacrosstheLi6PO5Cl|Li0.25MnO2interface(90psat400K).

JMaterChemA2019,7,5239-5247

StableLCO@LiNbO3|Li6.25PS5.25Cl0.75|Licell

JEnergyChemistry53(2021)147–154

PartialOforS:morestableSSE

EEM2022Onestonefortwobirds:goodSSEwithoutneedofcoatingforLCO!Remarkable

electrochemicaladvantageoverLGPS.GreatcommercialinterestinpracticalexploitationacrossChina-Japan.

2.Anti-perovskitetodouble-anti-perovskite

!!

Electricinsulating,superblyionicconducting

(a)Li+vacancydiffusivepathway

(b)interstitialchannelinadumbbellpathway

AIMD:Ea=0.18eV,Li+conductivity(300K)=12.5mS/cm

Thematerialshavebeenmade

J.Mater.Chem.A,2018,6,73-83ACSAppl.EnergyMater.2019,2,6288-6294

3.Na6SOI2doubleanti-perovskite

Na+conductivity(mS/cm):10.36(300K),1.79(223K)

Activation0.16eV

J.Mater.Chem.A,2018,6,19843-19852

4.Whatifseparatedinto2Dlayers?

DiscoveryofRuddlesden-Poppertypeanti-perovskite(ARP)

Identifiedfirststablehali-chalcogenideNa4OSI2

basedalloys

withrespecttostableconstituentphases

Na+/Li+DualIonalloyingeffect

Na4-x)LixS0.5O0.5I2(0≤x≤1)

Na3LiS0.5O0.5I265correspondingtominimalenergy!

BestandstableNa+conductorsidentified

6.3(300K)1.31(223K)mS/cm

Na31S4O4I16vs.Na23Li8S4O4I16

OnesystemforbothcathodeandSE:Lowlattice

mismatch&widevoltagerange

Fullcellwithcompatiblephasesinthesamesystem

StablematerialssystemMechanicallycompatible

Theoreticalenergydensitylimitover900Wh/kg

Reversibleenergydensity320Wh/kg

J.Mater.Chem.A,2019,7,10483-10493

5.Na3AO4X(A=S/Se,X=F/Cl)ascompletelystableSE

•Anti-perovskiteNa3SO4Clmetastable

Doubleanti-perovskite

Na3SeO4F0.5Cl0.5:

Na6Xoctahedrons

(S,Se)O4atbody-centres

•Doubleanti-perovskitewithalternatingNa6ClandNa6Funits

completestability

Insensitivetowateroroxygen

Na+conductivityinNa3SeO4F0.5Cl0.5,:8.167mS/cmat300Kand1.31mS/cmat223K;

activationbarrieronly0.137eV

O2-

H+

AIMDsimulationtorevealinteractionofoxygenandwater,showingtrajectoriesofO2-andH+nextto(a,d)

Na3SO4F0.5Cl0.5,(b,e)Na3SO4Cland(c,f)Na3SeO4F0.5Cl0.5overasimulationtimeof180psat300K.

J.Mater.Chem.A,2019,7,21985-21996

6.Li+encagedsystems:Voc>4V;compatablewithLi-anode

J.Mater.Chem.A,2021,9,14969-14976.

Optimal

IonConductivity(mS/cm)

Ea(eV)

Li2.125Y0.625Cl4

6.11

0.247

Li2.5Y0.5Cl4

8.42

0.244

Li3AlCl6

with1/80Li/Clvac

8.98

0.242

LiZnCl3

7.524

0.237

Li3AlCl6

LiZnCl3

(a)Li6MX8(M=Co,Cu,Fe,Mg,Mn),Li6NiCl8;(b)Li6TiX8;(c)Li4MX6(M=Fe,Mn,Ti);(d)Li3AlCl6,Li3FeX6;(e)Li2TiX4,Li2MnBr4,Li2CoCl4,Li2MgBr4;(f)Li2CuX4,(g)Li2CoBr4;(h)Li2MgCl4,Li2MnCl4,Li2FeX4;(i)LiFeX4;(j)LiNiX3;(k)LiCuX3;(l)LiTiCl3;(m)LiZnCl3

J.Mater.Chem.A,2021,9,25585-25594.

7.Anode-cathodeforSIBs

•IntercalationofNa+continuouslytoMXeneTi2CO(upto10

layers)

•Cathodeandanodebasedonsamesystem:highcapacity,wideVwindow,flexible

J.Mater.Chem.A2020,8,11177-11187

8.ProtectivecoatingtoLianode

•Li-halides:highoxidation

potentialbutveryinsulatingtoLi+

•Li-nitrides:goodLi+conductor,butverylowoxidationpotentialabout0.5V

•IdentifiedLi6NCl3asstable

compound,withbothhigh

oxidationpotentialandhighionicconductivity

Phys.Chem.Chem.Phys.,2020,22,12918-12928

Relatedexperimentalproofinprinciple:Wangetal.AdvMater2020,200274.(LiF-Li3N)

Publications

1.ZhuoWangandG.Shao,J.Mater.Chem.A,2017,5,21846-21857.

2.Z.Wang,HongjieXu,M.XuanandG.Shao,J.Mater.Chem.A,2018,6,73-83.

3.Z.WangandG.Shao,J.Mater.Chem.A,2018,6,6830-6839.

4.MinjieXuan,WeidongXiao,H.Xu,Y.Shen,ZhenzhenLi,ShijieZhang,Z.WangandG.Shao,J.Mater.Chem.A,2018,6,19231-19240.

5.YuranYu,Z.WangandG.Shao,JMater.Chem.A,2018,6,19843-19852.

6.H.Xu,Y.Yu,Z.WangandG.Shao,J.Mater.Chem.A,2019,7,5239-5247.

7.H.Xu,Y.Yu,Z.WangandG.Shao,EnergyEnviron.Mater.,2019,2,234-250.

8.Y.Yu,Z.WangandG.Shao,J.Mater.Chem.A,2019,7,21985-21996.

9.Y.Yu,Z.WangandG.Shao,J.Mater.Chem.A,2019,7,104

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论