




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
地图的数学基础§1
地球体1.1地球的自然表面
——
为了了解地球的形状,让我们由远及近地观察一下地球的自然表面。浩瀚宇宙之中:
地球是一个表面光滑、蓝色美丽的正球体。机舱窗口俯视大地:
地表是一个有些微起伏、极其复杂的表面。
——
珠穆朗玛峰与太平洋的马里亚纳海沟之间高差近20km。事实是: 地球不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。1.2地球的物理表面 当海洋静止时,自由水面与该面上各点的重力方向(铅垂线)成正交,这个面叫水准面。
在众多的水准面中,有一个与静止的平均海水面相重合,并假想其穿过大陆、岛屿形成一个闭合曲面,这就是大地水准面。它实际是一个起伏不平的重力等位面——地球物理表面。它所包围的形体称为大地体。大地水准面的意义1.地球形体的一级逼近: 对地球形状的很好近似,其面上高出与面下缺少的相当。2.起伏波动在制图学中可忽略:
对大地测量和地球物理学有研究价值,但在制图业务中,均把地球当作正球体。3.重力等位面: 可使用仪器测得海拔高程(某点到大地水准面的高度)。1.2地球的数学表面在测量和制图中就用旋转椭球体来代替大地球体,这个旋转椭球体通常称为地球椭球体,简称椭球体。
它是一个规则的数学表面,所以人们视其为地球体的数学表面,也是对地球形体的二级逼近,用于测量计算的基准面。椭球体
三要素:
长轴a(赤道半径)、短轴b(极半径)和椭球的扁率fEquatorialAxisPolarAxisNorthPoleSouthPoleEquatorabWGS[worldgeodeticsystem]84ellipsoid:a=6378137m
b=6356752.3m
equatorialdiameter=12756.3km
polardiameter=12713.5km
equatorialcircumference=40075.1km
surfacearea=510064500km2
a-b6378137-6356752.3f=——=————————
a63781371—=298.257f对
a,b,f
的具体测定就是近代大地测量的一项重要工作。
对地球形状a,b,f
测定后,还必须确定大地水准面与椭球体面的相对关系。即确定与局部地区大地水准面符合最好的一个地球椭球体——
参考椭球体,这项工作就是参考椭球体定位。 通过数学方法将地球椭球体摆到与大地水准面最贴近的位置上,并求出两者各点间的偏差,从数学上给出对地球形状的三级逼近。
由于国际上在推求年代、方法及测定的地区不同,故地球椭球体的元素值有很多种。中国1952年前采用海福特(Hayford)椭球体;1953—1980年采用克拉索夫斯基椭球体(坐标原点是前苏联玻尔可夫天文台);自1980年开始采用GRS1975(国际大地测量与地球物理学联合会IUGG1975推荐)新参考椭球体系,并确定陕西泾阳县永乐镇北洪流村为“1980西安坐标系”大地坐标的起算点。陕西省泾阳县永乐镇北洪流村为“1980西安坐标系”大地坐标的起算点——大地原点。
地球表面上的定位问题,是与人类的生产活动、科学研究及军事国防等密切相关的重大问题。具体而言,就是球面坐标系统的建立。§2地球坐标系与大地定位2.1地理坐标
——用经纬度表示地面点位的球面坐标。①天文经纬度②大地经纬度③地心经纬度①
天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。2.1地理坐标天文经度:观测点天顶子午面与格林尼治天顶子午面间的两面角。在地球上定义为本初子午面与观测点之间的两面角。天文纬度:在地球上定义为铅垂线与赤道平面间的夹角。②
大地经纬度:表示地面点在参考椭球面上的位置,用大地经度l
、大地纬度
和大地高h
表示。2.1地理坐标大地经度l
:指参考椭球面上某点的大地子午面与本初子午面间的两面角。东经为正,西经为负。大地纬度
:指参考椭球面上某点的垂直线(法线)与赤道平面的夹角。北纬为正,南纬为负。③
地心经纬度:即以地球椭球体质量中心为基点,地心经度同大地经度l
,地心纬度是指参考椭球面上某点和椭球中心连线与赤道面之间的夹角y
。2.1地理坐标在大地测量学中,常以天文经纬度定义地理坐标。在地图学中,以大地经纬度定义地理坐标。在地理学研究及地图学的小比例尺制图中,通常将椭球体当成正球体看,采用地心经纬度。2.2
中国的大地坐标系统1.中国的大地坐标系1980年以前:参见电子教案本章第十三页;1980年选用1975年国际大地测量协会推荐的参考 椭球:ICA-75椭球参数
a=6378140m
b=6356755m
f=1/298.2572.中国的大地控制网平面控制网:按统一规范,由精确测定地理坐标的地面点组成,由三角测量或导线测量完成,依精度不同,分为四等。2.2
中国的大地坐标系统由平面控制网和高程控制网组成,控制点遍布全国各地。高程控制网
:
按统一规范,由精确测定高程的地面点组成,以水准测量或三角高程测量完成。依精度不同,分为四等。中国高程起算面是黄海平均海水面。1956年在青岛观象山设立了水准原点,其他各控制点的绝对高程均是据此推
算,称为1956年黄海高程系。1987年国家测绘局公布:启用《1985国家高程基准》取代《黄海平均海水面》其比《黄海平均海水面》上升29毫米。
青岛观象山水准原点2.2
中国的大地坐标系统绝对高程相对高程国家水准原点
国家测绘局平面控制网国家测绘局高程控制网国家测绘局水准面示意图国家测绘局GPS控制网国家测绘局
2.3全球定位系统-GPS
授时与测距导航系统/全球定位系统(NavigationSatelliteTimingandRanging/GlobalPositioningSystem--GPS):是以人造卫星为基础的无线电导航系统,可提供高精度、全天候、实时动态定位、定时及导航服务。1.GPS系统由三个独立的部分组成空间部分:21颗工作卫星,3颗备用卫星(白色)。它们在高度20200km的近圆形轨道上运行,分布在六个轨道面上,轨道倾角55°,两个轨道面之间在经度上相隔60°,每个轨道面上布放四颗卫星。卫星在空间的这种配置,保障了在地球上任意地点,任意时刻,至少同时可见到四颗卫星。
地面支撑系统:1个主控站,3个注入站,5个监测站。它向GPS导航卫星提供一系列描述卫星运动及其轨道的参数;监控卫星沿着预定轨道运行;保持各颗卫星处于GPS时间系统及监控卫星上各种设备是否正常工作等。
用户设备部分:GPS接收机——接收卫星信号,经数据处理得到接收机所在点位的导航和定位信息。通常会显示出用户的位置、速度和时间。还可显示一些附加数据,如到航路点的距离和航向或提供图示。2.GPS系统定位原理数据,组成3个方程式,就可以解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式以求解,从而得到观测点经纬度和高程。
通过测量卫星信号到达接收机的时间延迟,即可算出用户到卫星的距离。再根据三维坐标中的距离公式,利用3颗卫星的3.常用GPS测量模式
常规静态测量:采用两台(或两台以上)GPS接收机,分别安置在一条或数条基线的两端,同步观测4颗以上卫星,每时段根据基线长度和测量等级观测45分钟以上的时间。常用于建立全球性或国家级大地控制网、地壳运动监测网。
快速静态测量:这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机依次到各待测测站,每测站观测数分钟。这种模式常用于控制网的建立及其加密、工程测量、地籍测量等。这种方法要求在观测时段内确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km。静态测量模式准动态测量
在一已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机在进行初始化后依次到各待测测站,每测站观测几个历元数据。这种方法不同于快速静态,除观测时间不一样外,它要求移动站在搬站过程中不能失锁,并且需要先在已知点或用其它方式进行初始化(采用有OTF功能的软件处理时例外)。
这种模式可用于开阔地区的加密控制测量、工程定位及碎部测量、剖面测量及线路测量等。要求在观测时段内确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km。动态测量模式实时动态测量:DGPS和RTK
在一个已知测站上架设GPS基准站接收机和数据链,连续跟踪所有可见卫星,并通过数据链向移动站发送数据。移动站接收机通过移动站数据链接收基准站发射来的数据,并在机进行处理,从而实时得到移动站的高精度位置。DGPS通常叫做实时差分测量,精度为亚米级到米级,这种方式是基准站将基准站上测量得到的RTCM数据通过数据链传输到移动站,移动站接收到RTCM数据后,自动进行解算,得到经差分改正以后的坐标。
RTK则是以载波相位观测量为根据的实时差分GPS测量,它是GPS测量技术发展中的一个新突破。它的工作思路与DGPS相似,只不过是基准站将观测数据发送到移动站(而不是发射RTCM数据),移动站接收机再采用更先进的在机处理方法进行处理,从而得到精度比DGPS高得多的实时测量结果。这种方法的精度一般为2cm左右。§3地图投影3.1地图表面和地球球面的矛盾
地图通常是绘在平面介质上的,而地球体表面是曲面,因此制图时首先需要把曲面展成平面,然而,球面是个不可展的曲面,要把球面直接展成平面,必然要发生断裂或褶皱。无论是将球面沿经线切开,或是沿纬线切开,或是在极点结合,或是在赤道结合,他们都是有裂隙的。
3.2地图投影的意义
地球椭球体表面是不可展曲面,要将曲面上的客观事物表示在有限的平面图纸上,必须经过由曲面到平面的转换。地图投影:在地球椭球面和平面之间建立点与点之间函数关系的数学方法,称为地图投影。
地图投影的实质:是将地球椭球面上的经纬线网按照一定的数学法则转移到平面上。x=f1(j,l)
y=f2(j
,l)3.3地图的比例尺
1.地图比例尺的含义地图比例尺:地图上一直线段长度与地面相应直线水平投影长度之比。可表达为(d为图上距离,D为实地距离)
根据地图投影变形情况,地图比例尺分为:主比例尺:
在投影面上没有变形的点或线上的比例尺。局部比例尺:在投影面上有变形处的比例尺。2.地图比例尺的表示
①
数字式比例尺
如1:10000
②文字式比例尺
如百万分之一
③
图解式比例尺 直线比例尺 斜分比例尺 复式比例尺 ④
特殊比例尺 变比例尺 无级别比例尺3.3地图投影变形1.投影变形的概念
把地图上和地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面。2.变形椭圆 取地面上一个微分圆(小到可忽略地球曲面的影响,把它当作平面看待),它投影到平面上通常会变为椭圆,通过对这个椭圆的研究,分析地图投影的变形状况。这种图解方法就叫变形椭圆。为经线长度比;为纬线长度比微小圆→变形椭圆该方程证明:地球面上的微小圆,投影后通常会变为椭圆,即:以O'为原点,以相交成q角的两共轭直径为坐标轴的椭圆方程式。代入:X2+Y2=1,得特别方向:变形椭圆上相互垂直的两个方向及经向和纬向长轴方向(极大值)a短轴方向(极小值)b经线方向m;纬线方向n统称主方向据阿波隆尼定理,有m2+n2=a2+b2m·n·sinq
=a·b3.投影变形的性质和大小
长度比和长度变形:投影面上一微小线段(变形椭圆半径)和球面上相应微小线段(球面上微小圆半径,已按规定的比例缩小)之比。
m表示长度比,Vm表示长度变形
长度比是变量,随位置和方向的变化而变化。=0不变>0变大<0变小面积比和面积变形:投影平面上微小面积(变形椭圆面积)dF′与球面上相应的微小面积(微小圆面积)dF之比。
P
表示面积比
Vp
表示面积变形
P=a·b=m
·
n(q=90)
P=m
·
n
·
sinq
(q≠90)
面积比是变量,随位置的不同而变化。=0不变>0变大<0变小 角度变形:投影面上任意两方向线所夹之角与球面上相应的两方向线夹角之差,称为角度变形。以ω表示角度最大变形。 设A点的坐标为(x、y),A
′点的坐标为(x
′
、y
′),则将上式两边各减和加
tana
即:将两式相除,得:显然当(a+a
′)=90°时,右端取最大值,则最大方向变形:以w表示角度最大变形:若已知
m,n,q,则:3.4地图投影方法1.
几何投影法地图投影最初建立在透视的几何原理上,它是把椭球面直接透视到平面上,或透视到可展开的曲面上,如平面、圆柱面和圆锥面。2.
数学解析法——以正轴圆锥投影为例经线
投影为放射直线,经差l与投影面上d成正比:d=c·l(c为圆锥系数,0<c<1)。纬线
投影为同心圆弧,其半径r是纬度
的函数,r
=f(
)。圆锥投影的一般公式为:X=r
s-
r
cosδr
=f(
)
Y=r
sind
d
=c·l等角投影条件:ω=0,m=n,构成经移项、积分、整理得:3.5地图投影分类1.按地图投影的构成方法分类(1)几何投影:
将椭球面上的经纬线网投影到几何面上,然后将几何面展为平面。
方位投影:以平面作投影面,使平面与球面相切或相割,将球面上的经纬线投影到平面上而成。 圆柱投影:以圆柱面作投影面,使圆柱面与球面相切或相割,将球面上的经纬线投影到圆柱面上,然后将圆柱面展为平面而成。 圆锥投影:以圆锥面作投影面,使圆锥面与球面相切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展为平面而成。(2)非几何投影:
根据某些条件,用数学解析法确定球面与平面之间点与点的函数关系。 伪方位投影:在方位投影的基础上,根据某些条件改变经线形状而成,除中央经线为直线外,其余均投影为对称中央经线的曲线。 伪圆柱投影:在圆柱投影基础上,根据某些条件改变经线形状而成,无等角投影。除中央经线为直线外,其余均投影为对称中央经线的曲线。 伪圆锥投影:在圆锥投影基础上,根据某些条件改变经线形状而成,无等角投影。除中央经线为直线外,其余均投影为对称中央经线的曲线。 多圆锥投影:设想有更多的圆锥面与球面相切,投影后沿一母线剪开展平。纬线投影为同轴圆弧,其圆心都在中央经线的延长线上。中央经线为直线,其余经线投影为对称于中央经线的曲线。2.按地图投影的变形性质分类
等角投影:投影面上某点的任意两方向线夹角与椭球面上相应两线段夹角相等,即角度变形为零ω=0(或a=b,m=n)。
等积投影:投影面与椭球面上相应区域的面积相等,即面积变形为零Vp=0(或
P=1,a=1/b)。
任意投影:投影图上,长度、面积和角度都有变形,它既不等角又不等积。其中,等距投影是在特定方向上没有长度变形的任意投影(m=1)。第四节常用地图投影5.1地形图投影
5.1地形图投影
1.
高斯-克吕格投影(等角横切椭圆柱投影) 以椭圆柱为投影面,使地球椭球体的某一经线与椭圆柱相切,然后按等角条件,将中央经线两侧各一定范围内的地区投影到椭圆柱面上,再将其展成平面而得。
由德国数学家、天文学家高斯(C.F.Gauss,1777—1855)及大地测量学家克吕格(J.Krüger,1857—1923)共同创建。 此投影无角度变形,中央经线无长度变形。为保证精度,采用分带投影方法: 经差6°或3°分带,长度变形<0.14%中国国家基本比例尺地形图采用高斯-克吕格6°分带投影:
1∶1万(3°分带)
1∶2.5万、1∶5万、1∶10万、1∶25万、1∶50万。高斯-克吕格直角坐标yA
=245863.7myB
=-168474.8myA通=20745863.7myB通=20331525.2m2.
通用横轴墨卡托投影
——
UTM投影
以横轴椭圆柱面割于地球椭球体的两条等高圈,按等角条件,将中央经线两侧各一定范围内的地区投影到椭圆柱面上,再将其展成平面而得。又称
UniversalTransverseMercator——
UTM投影。
此投影无角度变形,中央经线长度比为0.9996,距中央经线约±180km处的两条割线上无变形。亦采用分带投影方法:经差6°或3°分带。长度变形<0.04%3.百万分一地形图投影新编国际百万分一地图采用双标准纬线等角圆锥投影,自赤道起按纬差4°分带,北纬84°以北和南纬80°以南采用等角方位投影。中国《1∶100万地形图编绘规范》规定采用边纬线与中纬线长度变形绝对值相等的双标准纬线等角割圆锥投影,按纬差4°分带长度变形最大值:±0.03%面积变形最大值:±0.06%5.2区域图投影
1.方位投影
正轴方位投影正轴等角方位投影正轴等距方位投影横轴和斜轴方位投影4.3区域图投影
2.圆锥投影
以圆锥面作投影面,使圆锥面与球面相切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展为平面而成。①正轴圆锥投影 经线:投影为放射直线,经差l与投影面上d成正比:d=Cl
(C为常数)。
纬线:投影为同心圆弧,其半径r是纬度
的函数,r
=f(
)
圆锥投影的各种变形均是纬度
的函数,与经度l无关。适于制作中纬度沿东西方向延伸地区的地图4.3区域图投影等角割圆锥投影条件:w=0;
m=n;
n1=n2=1相割纬线:
1=25°
;
2=45°
4.3区域图投影等积割圆锥投影条件:P=mn=1;n1=n2=1
多用于要求面积对比正确的图种,如分布图、类型图、区划图如1:800万,1:600万,1:400万《中华人民共和国地图》采用了(
1=25°;
2=47°)的该投影。等距割圆锥投影条件:m=1;n1=n2=1
原苏联出版的苏联全图,采用(
1=47°;
2=62°)的该投影。4.3区域图投影
3.
伪圆锥投影
由法国彭纳(R.Bonne)在圆锥投影的基础上,根据某些条件改变经线形状设计而成,故又称彭纳投影。纬线长度比
n=1,同心圆弧中央经线
m0=1其他经线为对称m0的曲线常用于编制中纬度地区小比例区域图4.3区域图投影5.3世界地图投影主要类型:多圆锥投影、圆柱投影和伪圆柱投影
具体方案:等差分纬线多圆锥投影正切差分纬线多圆锥投影墨卡托(Mercator)投影摩尔威特(Mollweide)投影古德(Goode)投影4.4世界地图投影
1.多圆锥投影 设想更多的圆锥面与球面相切,投影后沿一母线剪开展平。纬线投影为同轴圆弧,其圆心都在中央经线的延长线上。中央经线为直线,其余经线投影为对称中央经线的曲线。
普通多圆锥投影(1820年美国Hasslar
所创)m0=1n=1m>1任意投影适于南北方向延伸地区地图普通多圆锥分带投影图将整个地球按一定经差分为若干带,每带中央经线投影为直线,各带在赤道相接。用于制作地球仪。等差分纬线多圆锥投影
中国地图出版社1963年设计,其经线间隔随距中央经线距离的增大而呈等差递减,属任意投影。正切差分纬线多圆锥投影
中国地图出版社1976年设计,其经线间隔按与中央经线经差的正切函数递减。属任意投影。世界图
2.
圆柱投影 设想以圆柱面为投影面,使圆柱面与地球表面相切或相割,将地球表面上的经纬线投影到圆柱面上,再把圆柱面沿一条母线剪开展为平面而成。4.4世界地图投影
①正轴等角圆柱投影(墨卡托投影)
由荷兰地图学家墨卡托(MercatorGerardus,1512—1594)于1569年所创设,故又名墨卡托投影。特点:不仅保持了方向和相对位置的正确,而且使等角航线在图上表现为直线。这一特性对航海具有重要的实用价值。4.4世界地图投影墨卡托投影等角航线:是地球表面上与经线相交成相同角度的曲线。在地球表面上除经线和纬线以外的等角航线,都是以极点为渐近点的螺旋曲线。大圆航线:地球面上两点间最短距离是通过两点间的大圆弧,也称为大圆航线。4.4世界地图投影墨卡托投影等角航线在图上表现为直线。这一特性对航海具有很重要的意义。地球面上两点间最短距离是通过两点间的大圆弧,也称为大圆航线4.4世界地图投影3.伪圆柱投影 是在圆柱投影的基础上,规定纬线仍然为平行直线,而经线则根据某些特定条件改变经线形状而设计成对称于中央经线的各类曲线的非几何投影,在具体应用中以等积性质居多,而无等角投影。⑴桑逊(Sanson)投影⑵摩尔威特(Mollweide)投影⑶古德(Goode)投影常用的投影方案:4.4世界地图投影
⑴桑逊(Sanson-Flamsteed)投影 经线为正弦曲线的等积伪圆柱投影,纬线为间隔相等的平行直线,每条纬线上经线间隔相等。由法国桑逊于1650年设计。投影特点:P=1无面积变形n=1纬线长度比为1m0=1中央经线长度比=1m>1经线长度比>14.4世界地图投影该投影最初用于世界地图中,也适用于赤道附近和沿中央经线方向延伸的地图,如非洲地图、南美洲地图等。⑵摩尔威特(Mollweide)投影 经线为正弦曲线的等积伪圆柱投影,纬线为间隔相等的平行直线,每条纬线上经线间隔相等。由德国摩尔威特于1805年设计。投影特点:P=1无面积变形S90=Searth
/2赤道长度=中央经线×2常用于编制世界地图及东、西半球地图S90=Searth
/240°44′11.8″4.4世界地图投影半球面积⑶古德(Goode)投影
美地理学家古德(J.PaulGoode)于1923年提出在整个制图区域主要部分中央都设置一条中央经线,分别进行投影,则全图就分成几瓣,各瓣沿赤道连接在一起。投影特点:分瓣、组合投影,变形减小且均匀大陆完整,大洋割裂大洋完整,大陆割裂常用于编制世界地图4.4世界地图投影摩尔威特—
古德投影4.4世界地图投影第五节地图投影的应用5.1地图投影的选择依据
1.制图区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林省长春市名校调研系列卷(市命题)2024-2025学年初三总复习质量检测试题(一)生物试题含解析
- 山西机电职业技术学院《代数学》2023-2024学年第一学期期末试卷
- 西藏林芝地区第一中学2025届高三全真模拟试卷生物试题含解析
- 西藏藏医药大学《播音主持语音与发声》2023-2024学年第二学期期末试卷
- 九江职业大学《刑法分论专题》2023-2024学年第二学期期末试卷
- 江苏省苏州市高新区达标名校2025届初三第二次质量监测英语试题含答案
- 上海市嘉定区封浜高中2025届高考原创信息试卷物理试题(四)含解析
- 山东省滨州邹平市2024-2025学年六年级下学期调研数学试卷含解析
- 浙江省嘉兴市嘉善高级中学2025届高三3月月考化学试题(A卷)试卷含解析
- 潍坊市昌乐县2025届五下数学期末质量跟踪监视试题含答案
- 授权他人使用车辆委托书
- 建筑防水工程技术规程DBJ-T 15-19-2020
- 强制执行申请书(劳动仲裁)
- 高中语文中职语文《廉颇蔺相如列传》课件-完美版
- FZT 74005-2016 针织瑜伽服行业标准
- 2024年湖北省武汉市高考数学一调试卷
- 13区域分析与区域规划(第三版)电子教案(第十三章)
- JJG 4-2015钢卷尺行业标准
- 《公路桥涵养护规范》(JTG5120-2021)
- 晋升羽毛球一级裁判员考试试题
- 【课件】文明的瑰宝(艺术色彩)课件高中美术人教版(2019)选择性必修1+绘画
评论
0/150
提交评论