郑州电力高等专科学校《设计基础》2023-2024学年第二学期期末试卷_第1页
郑州电力高等专科学校《设计基础》2023-2024学年第二学期期末试卷_第2页
郑州电力高等专科学校《设计基础》2023-2024学年第二学期期末试卷_第3页
郑州电力高等专科学校《设计基础》2023-2024学年第二学期期末试卷_第4页
郑州电力高等专科学校《设计基础》2023-2024学年第二学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页郑州电力高等专科学校《设计基础》

2023-2024学年第二学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、图像分割是将图像分成不同的区域,每个区域具有相似的特征。假设要对医学图像进行器官分割,以下关于图像分割方法的描述,哪一项是不正确的?()A.基于阈值的分割方法简单直接,但对于复杂图像效果往往不佳B.基于边缘检测的分割方法通过寻找图像中的边缘来划分区域,但容易受到噪声影响C.基于深度学习的语义分割方法能够实现像素级别的分类,效果较好,但计算量较大D.图像分割只适用于灰度图像,对于彩色图像无法进行有效的分割2、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识3、在计算机视觉的图像分类任务中,假设要处理类别不均衡的数据集,即某些类别的样本数量远远少于其他类别。以下关于处理类别不均衡的方法描述,正确的是:()A.直接使用传统的分类算法,类别不均衡不会对结果产生明显影响B.过采样少数类别的样本可以增加其数量,但可能导致过拟合C.欠采样多数类别的样本能够平衡数据集,但会丢失部分有用信息D.类别不均衡问题无法通过数据处理方法解决,只能通过改进分类算法来应对4、假设要构建一个能够对书画作品进行真伪鉴定的计算机视觉系统,需要对作品的笔触、线条和风格等特征进行分析。以下哪种技术在书画鉴定中可能具有应用前景?()A.笔迹分析B.风格迁移C.图像风格分析D.以上都是5、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下哪种图像采集设备可能提供更高的分辨率和精度?()A.普通数码相机B.工业线阵相机C.手机摄像头D.监控摄像头6、在图像配准任务中,需要将不同时间、不同视角或不同传感器获取的图像进行对齐。假设我们要将一张卫星图像与一张航拍图像进行配准,以下哪个因素对于配准的准确性影响最大?()A.图像的分辨率差异B.图像的旋转和平移C.图像的光照条件D.图像中的噪声7、计算机视觉中的视频压缩是为了减少视频数据的存储空间和传输带宽。假设要对一段高清视频进行压缩,同时保持较好的视觉质量。以下关于视频压缩方法的描述,正确的是:()A.帧内压缩通过去除图像内部的冗余信息实现压缩,对图像质量影响较小B.帧间压缩利用相邻帧之间的相似性进行压缩,但会引入明显的失真C.运动估计在帧间压缩中不重要,对压缩效率提升作用不大D.视频压缩的码率越低,压缩效果越好,视觉质量也越高8、计算机视觉在虚拟现实(VR)和增强现实(AR)中有着重要的应用。假设要在VR游戏中实现真实的场景交互。以下关于计算机视觉在VR/AR中的描述,哪一项是不正确的?()A.可以通过对用户的动作和姿态进行识别,实现自然的交互操作B.能够将虚拟物体与真实场景进行准确的融合和匹配C.计算机视觉技术可以提高VR/AR体验的沉浸感和真实感D.VR/AR中的计算机视觉应用不存在任何技术挑战和限制9、计算机视觉中的语义分割任务旨在为图像中的每个像素分配一个类别标签。假设要对医学图像中的病变区域进行精确分割,以下哪种技术可能对提高分割精度有较大帮助?()A.使用更深的卷积神经网络架构B.引入多尺度特征融合C.增加训练数据中的噪声D.减少网络中的参数数量10、在计算机视觉中,图像分类是一项基础任务。假设我们有一组包含各种动物的图像数据集,需要训练一个模型来准确区分不同的动物类别。在选择图像分类模型时,以下哪种模型架构通常在处理大规模图像数据集时表现出色?()A.传统的机器学习算法,如支持向量机(SVM)B.浅层的卷积神经网络(CNN)C.深度卷积神经网络,如ResNetD.循环神经网络(RNN)11、在计算机视觉的图像检索任务中,根据用户的需求从图像数据库中查找相关图像。假设要从一个大型的图像库中检索包含特定物体的图像,以下关于图像检索方法的描述,哪一项是不正确的?()A.可以基于图像的内容特征,如颜色、形状和纹理等,进行相似性度量和检索B.深度学习模型能够提取更具语义和判别力的特征,提高图像检索的准确性C.图像检索的结果只取决于图像的特征表示,与检索算法的效率无关D.可以结合用户的反馈和交互,不断优化图像检索的结果12、计算机视觉在自动驾驶领域有广泛的应用。假设一辆自动驾驶汽车需要识别道路上的交通标志,以下关于自动驾驶中的计算机视觉应用的描述,哪一项是不正确的?()A.多摄像头融合可以提供更全面的道路信息,提高交通标志识别的准确性B.深度学习模型可以实时处理摄像头采集的图像,快速准确地识别交通标志C.除了交通标志识别,计算机视觉还可以用于车道检测、行人检测和障碍物检测等任务D.自动驾驶中的计算机视觉系统完全不需要其他传感器(如雷达、激光雷达)的辅助,仅依靠图像信息就能实现安全可靠的驾驶13、在计算机视觉的目标检测中,对于小目标的检测往往具有较大的挑战性。为了提高小目标检测的准确率,以下哪种策略可能是有效的?()A.多尺度特征融合B.增加训练数据中的小目标样本C.使用更高分辨率的输入图像D.以上都是14、计算机视觉中的图像增强旨在改善图像的质量和视觉效果。假设一张低对比度、有噪声的医学图像需要进行增强处理,以突出病变区域并减少噪声的影响。以下哪种图像增强技术最为适合?()A.直方图均衡化B.中值滤波C.高斯滤波D.锐化滤波15、计算机视觉中的特征提取是非常关键的步骤。假设要从一组图像中提取具有代表性的特征,以下关于特征提取方法的描述,正确的是:()A.手工设计的特征,如SIFT和HOG,在任何情况下都比深度学习自动学习的特征更有效B.深度学习中的卷积神经网络能够自动学习到图像的多层次特征,具有很强的表达能力C.特征提取的结果对后续的图像分类和目标检测任务没有影响D.特征提取只需要考虑图像的局部信息,全局信息不重要二、简答题(本大题共4个小题,共20分)1、(本题5分)计算机视觉中如何进行妇女服务中的需求分析?2、(本题5分)描述计算机视觉在消防中的应用。3、(本题5分)简述图像的色彩模型转换方法。4、(本题5分)解释计算机视觉在刑侦中的应用。三、应用题(本大题共5个小题,共25分)1、(本题5分)使用计算机视觉方法,检测地铁站台的人流拥堵情况。2、(本题5分)通过计算机视觉,对不同类型的糖画作品进行分类。3、(本题5分)运用深度学习模型,对古代青铜器的年代和工艺进行鉴定。4、(本题5分)设计一个程序,通过计算机视觉识别不同款式的服装。5、(本题5分)基于深度学习,实现对田径比赛中运动员起跑反应时间的检测。四、分析题(本大题共4个小题,共40分)1、(本题10分)研究某运动装备品牌的新品预览页面设计,剖析其如何通过精彩的图片和文字描述,激发消费者的购买欲望。2、(本题10分)分析某科技展

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论