广东岭南职业技术学院《机器学习与人工智能》2023-2024学年第二学期期末试卷_第1页
广东岭南职业技术学院《机器学习与人工智能》2023-2024学年第二学期期末试卷_第2页
广东岭南职业技术学院《机器学习与人工智能》2023-2024学年第二学期期末试卷_第3页
广东岭南职业技术学院《机器学习与人工智能》2023-2024学年第二学期期末试卷_第4页
广东岭南职业技术学院《机器学习与人工智能》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广东岭南职业技术学院

《机器学习与人工智能》2023-2024学年第二学期期末试卷题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在一个异常检测问题中,例如检测网络中的异常流量,数据通常呈现出正常样本远远多于异常样本的情况。如果使用传统的监督学习算法,可能会因为数据不平衡而导致模型对异常样本的检测能力不足。以下哪种方法更适合解决这类异常检测问题?()A.构建一个二分类模型,将数据分为正常和异常两类B.使用无监督学习算法,如基于密度的聚类算法,识别异常点C.对数据进行平衡处理,如复制异常样本,使正常和异常样本数量相等D.以上方法都不适合,异常检测问题无法通过机器学习解决2、在机器学习中,交叉验证是一种常用的评估模型性能和选择超参数的方法。假设我们正在使用K折交叉验证来评估一个分类模型。以下关于交叉验证的描述,哪一项是不准确的?()A.将数据集随机分成K个大小相等的子集,依次选择其中一个子集作为测试集,其余子集作为训练集B.通过计算K次实验的平均准确率等指标来评估模型的性能C.可以在交叉验证过程中同时调整多个超参数,找到最优的超参数组合D.交叉验证只适用于小数据集,对于大数据集计算成本过高,不适用3、某研究需要对一个大型数据集进行降维,同时希望保留数据的主要特征。以下哪种降维方法在这种情况下可能较为合适?()A.主成分分析(PCA)B.线性判别分析(LDA)C.t-分布随机邻域嵌入(t-SNE)D.自编码器4、在使用支持向量机(SVM)进行分类时,核函数的选择对模型性能有重要影响。假设我们要对非线性可分的数据进行分类。以下关于核函数的描述,哪一项是不准确的?()A.线性核函数适用于数据本身接近线性可分的情况B.多项式核函数可以拟合复杂的非线性关系,但计算复杂度较高C.高斯核函数(RBF核)对数据的分布不敏感,适用于大多数情况D.选择核函数时,只需要考虑模型的复杂度,不需要考虑数据的特点5、某研究团队正在开发一个用于医疗诊断的机器学习系统,需要对疾病进行预测。由于医疗数据的敏感性和重要性,模型的可解释性至关重要。以下哪种模型或方法在提供可解释性方面具有优势?()A.深度学习模型B.决策树C.集成学习模型D.强化学习模型6、考虑在一个图像识别任务中,需要对不同的物体进行分类,例如猫、狗、汽车等。为了提高模型的准确性和泛化能力,以下哪种数据增强技术可能是有效的()A.随机旋转图像B.增加图像的亮度C.对图像进行模糊处理D.减小图像的分辨率7、在分类问题中,如果正负样本比例严重失衡,以下哪种评价指标更合适?()A.准确率B.召回率C.F1值D.均方误差8、在机器学习中,模型评估是非常重要的环节。以下关于模型评估的说法中,错误的是:常用的模型评估指标有准确率、精确率、召回率、F1值等。可以通过交叉验证等方法来评估模型的性能。那么,下列关于模型评估的说法错误的是()A.准确率是指模型正确预测的样本数占总样本数的比例B.精确率是指模型预测为正类的样本中真正为正类的比例C.召回率是指真正为正类的样本中被模型预测为正类的比例D.模型的评估指标越高越好,不需要考虑具体的应用场景9、在一个信用评估的问题中,需要根据个人的信用记录、收入、债务等信息评估其信用风险。以下哪种模型评估指标可能是最重要的?()A.准确率(Accuracy),衡量正确分类的比例,但在不平衡数据集中可能不准确B.召回率(Recall),关注正例的识别能力,但可能导致误判增加C.F1分数,综合考虑准确率和召回率,但对不同类别的权重相同D.受试者工作特征曲线下面积(AUC-ROC),能够评估模型在不同阈值下的性能,对不平衡数据较稳健10、在一个金融风险预测的项目中,需要根据客户的信用记录、收入水平、负债情况等多种因素来预测其违约的可能性。同时,要求模型能够适应不断变化的市场环境和新的数据特征。以下哪种模型架构和训练策略可能是最恰当的?()A.构建一个线性回归模型,简单直观,易于解释和更新,但可能无法处理复杂的非线性关系B.选择逻辑回归模型,结合正则化技术防止过拟合,能够处理二分类问题,但对于多因素的复杂关系表达能力有限C.建立多层感知机神经网络,通过调整隐藏层的数量和节点数来捕捉复杂关系,但训练难度较大,容易过拟合D.采用基于随机森林的集成学习方法,结合特征选择和超参数调优,能够处理多因素和非线性关系,且具有较好的稳定性和泛化能力11、某机器学习模型在训练过程中,损失函数的值一直没有明显下降。以下哪种可能是导致这种情况的原因?()A.学习率过高B.模型过于复杂C.数据预处理不当D.以上原因都有可能12、在强化学习中,智能体通过与环境交互来学习最优策略。如果智能体在某个状态下采取的行动总是导致低奖励,它应该()A.继续采取相同的行动,希望情况会改善B.随机选择其他行动C.根据策略网络的输出选择行动D.调整策略以避免采取该行动13、某研究团队正在开发一个用于预测股票价格的机器学习模型,需要考虑市场的动态性和不确定性。以下哪种模型可能更适合处理这种复杂的时间序列数据?()A.长短时记忆网络(LSTM)结合注意力机制B.门控循环单元(GRU)与卷积神经网络(CNN)的组合C.随机森林与自回归移动平均模型(ARMA)的融合D.以上模型都有可能14、在一个语音合成任务中,需要将输入的文本转换为自然流畅的语音。以下哪种技术或模型常用于语音合成?()A.隐马尔可夫模型(HMM)B.深度神经网络(DNN)C.循环神经网络(RNN),如LSTM或GRUD.以上都是15、想象一个文本分类的任务,需要对大量的新闻文章进行分类,如政治、经济、体育等。考虑到词汇的多样性和语义的复杂性。以下哪种词向量表示方法可能是最适合的?()A.One-Hot编码,简单直观,但向量维度高且稀疏B.词袋模型(BagofWords),忽略词序但计算简单C.分布式词向量,如Word2Vec或GloVe,能够捕捉词与词之间的语义关系,但对多义词处理有限D.基于Transformer的预训练语言模型生成的词向量,具有强大的语言理解能力,但计算成本高16、假设正在比较不同的聚类算法,用于对一组没有标签的客户数据进行分组。如果数据分布不规则且存在不同密度的簇,以下哪种聚类算法可能更适合?()A.K-Means算法B.层次聚类算法C.密度聚类算法(DBSCAN)D.均值漂移聚类算法17、在一个分类问题中,如果数据分布不均衡,以下哪种方法可以用于处理这种情况?()A.过采样B.欠采样C.生成对抗网络(GAN)生成新样本D.以上方法都可以18、考虑一个图像分类任务,使用深度学习模型进行训练。在训练过程中,如果发现模型在训练集上的准确率很高,但在验证集上的准确率较低,可能存在以下哪种问题?()A.模型欠拟合,需要增加模型的复杂度B.数据预处理不当,需要重新处理数据C.模型过拟合,需要采取正则化措施D.训练数据量不足,需要增加更多的数据19、在进行模型压缩时,以下关于模型压缩方法的描述,哪一项是不准确的?()A.剪枝是指删除模型中不重要的权重或神经元,减少模型的参数量B.量化是将模型的权重进行低精度表示,如从32位浮点数转换为8位整数C.知识蒸馏是将复杂模型的知识转移到一个较小的模型中,实现模型压缩D.模型压缩会导致模型性能严重下降,因此在实际应用中应尽量避免使用20、假设正在研究一个时间序列预测问题,数据具有季节性和趋势性。以下哪种模型可以同时处理这两种特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以21、在深度学习中,卷积神经网络(CNN)被广泛应用于图像识别等领域。假设我们正在设计一个CNN模型,对于图像分类任务,以下哪个因素对模型性能的影响较大()A.卷积核的大小B.池化层的窗口大小C.全连接层的神经元数量D.以上因素影响都不大22、在进行时间序列预测时,有多种方法可供选择。假设我们要预测股票价格的走势。以下关于时间序列预测方法的描述,哪一项是不正确的?()A.自回归移动平均(ARMA)模型假设时间序列是线性的,通过对历史数据的加权平均和残差来进行预测B.差分整合移动平均自回归(ARIMA)模型可以处理非平稳的时间序列,通过差分操作将其转化为平稳序列C.长短期记忆网络(LSTM)能够捕捉时间序列中的长期依赖关系,适用于复杂的时间序列预测任务D.所有的时间序列预测方法都能准确地预测未来的股票价格,不受市场不确定性和突发事件的影响23、在评估机器学习模型的性能时,通常会使用多种指标。假设我们有一个二分类模型,用于预测患者是否患有某种疾病。以下关于模型评估指标的描述,哪一项是不正确的?()A.准确率是正确分类的样本数占总样本数的比例,但在类别不平衡的情况下可能不准确B.召回率是被正确预测为正例的样本数占实际正例样本数的比例C.F1分数是准确率和召回率的调和平均值,综合考虑了模型的准确性和全面性D.均方误差(MSE)常用于二分类问题的模型评估,值越小表示模型性能越好24、在使用朴素贝叶斯算法进行分类时,以下关于朴素贝叶斯的假设和特点,哪一项是不正确的?()A.假设特征之间相互独立,简化了概率计算B.对于连续型特征,通常需要先进行离散化处理C.朴素贝叶斯算法对输入数据的分布没有要求,适用于各种类型的数据D.朴素贝叶斯算法在处理高维度数据时性能较差,容易出现过拟合25、在机器学习中,降维是一种常见的操作,用于减少特征的数量。以下哪种降维方法是基于线性变换的?()A.主成分分析(PCA)B.线性判别分析(LDA)C.t-SNED.以上都是二、简答题(本大题共4个小题,共20分)1、(本题5分)说明机器学习在教育领域的个性化学习。2、(本题5分)简述梯度下降法在优化模型参数中的作用。3、(本题5分)简述神经网络的基本结构和工作原理。4、(本题5分)什么是联邦学习?它的优势和应用场景是什么?三、应用题(本大题共5个小题,共25分)1、(本题5分)利用GAN生成新的建筑设计图。2、(本题5分)使用K-Means聚类算法对客户消费数据进行分组,分析不同组别的消费特征。3、(本题5分)借助生物数学模型数据模拟生物过程和预测生物现象。4、(本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论