




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
集合的概念定义一般地,我们把研究对象统称为元素,把一些元素组成的整体叫做集合(简称集)集合与元素的表示集合通常用大写字母,,,表示,元素用小写字母,,,表示元素与集合的关系元素与集合的关系记法读法是集合的元素属于集合不是集合的元素不属于集合常用数集及其记法数集记法非负整数集(自然数集)正整数集或整数集有理数集实数集例1.下列各组对象不能构成集合的是(
)A.所有直角三角形 B.抛物线上的所有点C.某中学高一年级开设的所有课程 D.充分接近的所有实数变式1-1.下列元素的全体不能组成集合的是(
)A.中国古代四大发明 B.地球上的小河流C.方程的实数解 D.周长为的三角形变式1-2.下列叙述能够组成集合的是(
)A.我校所有体质好的同学 B.我校所有800米达标的女生C.全国所有优秀的运动员 D.全国所有环境优美的城市变式1-3.下列各组对象不能构成集合的是(
)A.上课迟到的学生B.2022年高考数学难题C.所有有理数D.小于x的正整数例2.下列元素与集合的关系中,正确的是(
)A. B. C. D.变式2-1.(多选)下列关系中,正确的是(
).A. B. C. D.变式2-2.用符号“”或“”填空:0______Z,π______Q.变式2-3.用符号“”或“”填空:______,_______.集合中元素的性质确定性给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何元素在不在这个集合中就确定了。互异性一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不能重复出现的。无序性组成集合的元素没有顺序之分,只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。例3.已知,中含有的元素有,求的值.变式3-1.若集合A中含有三个元素,,,且,求实数a的值.变式3-2.设,集合中含有三个元素3,,.(1)求实数应满足的条件;(2)若,求实数的值.变式3-3.已知集合有三个元素:,,,集合也有三个元素:,,.(1)若,求的值;(2)若,求实数的值;变式3-4.已知集合A中的元素全为实数,且满足:若,则.(1)若,求出A中其他所有元素.(2)0是不是集合A中的元素?请你取一个实数,再求出A中的元素.(3)根据(1)(2),你能得出什么结论?集合的表示方法列举法我们可以把“地球上的四大洋"组成的集合表示为把“方程的所有实数根”组成的集合表示为.像这样把集合的元素一一列举出来.并用花括号“”括起来表示集合的方法叫做列举法.描述法用集合所含元素的共同特征表示集合的方法叫做描述法具体方法是在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写上这个元素所具有的共同特征。数学表达式为:,其中为代表元素,为共同特征。例4.用列举法表示下列集合:(1)满足的x值组成的集合;(2)方程x2+x+1=0的根组成的集合;(3)不大于15的正奇数组成的集合;(4)不大于10的正偶数组成的集合.变式4-1.用列举法表示下列集合(1)以内非负偶数的集合;(2)方程的所有实数根组成的集合;(3)一次函数与的图象的交点组成的集合.变式4-2.用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=2x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合;(4)由所有正整数构成的集合.变式4-3.用描述法表示下列集合:(1)所有被3整除的整数组成的集合;(2)不等式的解集;(3)方程的所有实数解组成的集合;(4)抛物线上所有点组成的集合;(5)集合.例5.用描述法表示下列集合:(1)函数y=-2x2+x图象上的所有点组成的集合;(2)不等式2x-3<5的解组成的集合;(3)如图中阴影部分的点(含边界)的集合;(4)3和4的所有正的公倍数构成的集合.变式5-1.表示下列集合:(1)请用列举法表示方程的解集;(2)请用描述法表示平面直角坐标系内所有第一、三象限内的点组成的集合;(3)请用描述法表示被5除余3的正整数组成的集合;(4)请用描述法表示二次函数的图象上所有点的纵坐标组成的集合.变式5-2.选择适当的方法表示下列集合:(1)不小于1且不大于17的质数组成的集合A;(2)所有正奇数组成的集合B;(3)绝对值不大于3的所有整数组成的集合C;(4)直角坐标平面上,抛物线上的点组成的集合D.变式5-3.用适当的方法表示下列集合.(1)方程组的解集;(2)1000以内被3除余2的正整数所构成的集合;(3)直角坐标平面上的第二象限内的点所构成的集合;(4)所有三角形构成的集合.变式5-4.根据要求写出下列集合.(1)已知,用列举法表示集合.(2)已知集合,用列举法表示集合A.(3)已知方程组,分别用描述法、列举法表示该集合.(4)已知集合B={(x,y)|2x+y-5=0,x∈N,y∈N},用列举法表示该集合.(5)用适当的方法表示坐标平面内坐标轴上的点集.集合相等构成两个集合的元素一样,则两个集合相等例6.设a,b∈R,集合,则=(
)A.1 B.-1 C.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年最低生活保障服务合作协议书
- 技能培训班宣传工作计划
- 部编版二年级下册语文课后辅导计划
- 餐饮业新媒体推广操作流程
- 课题申报书:涉农高校毕业生就业研究
- 课题申报书:少先队活动项目化运行规律研究
- 课题申报书:人口变迁趋势下职业教育专业体系重构研究
- 课题申报书:人工智能赋能大学生心理健康状况自动监测及应用研究
- 城市照明设施质量管理措施
- 课题申报书:培养高素质农民路径研究
- 7不甘屈辱 奋勇抗争-圆明园的诉说(教学设计)-部编版道德与法治五年级下册
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- TSG 23-2021 气瓶安全技术规程 含2024年第1号修改单
- 99(03)S203 消防水泵接合器安装(含2003年局部修改版)
- 厦门市水资源公报(2023年)
- 刑法学(上册)马工程课件 第1章 刑法概说
- 输变电工程标准化施工作业卡-线路施工部分
- 【公开课】复调音乐的巡礼+课件-高一音乐人音版必修音乐鉴赏
- 江西住建云-建设项目数字化审图·项目监管一体化平台-建设单位用户手册
- 《哈姆莱特》同步练习-统编版高中语文必修下册
- 三字经1-36课教案
评论
0/150
提交评论