




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page11页,共=sectionpages33页第四章三角形第20讲图形的相似与位似(思维导图+3考点+3命题点17种题型(含6种解题技巧))TOC\o"1-1"\n\h\z\u01考情透视·目标导航02知识导图·思维引航03考点突破·考法探究考点一比例线段及有关性质考点二平行线分线段成比例考点三位似图形04题型精研·考向洞悉命题点一比例的性质►题型01利用比例的性质求解►题型02黄金分割命题点二平行线分线段成比例►题型01由平行线分线段成比例判断式子正误►题型02平行线分线段成比例►题型03平行线分线段成比例—A型►题型04由平行线分线段成比例—X型►题型05平行线分线段成比例与三角形中位线综合►题型06平行线分线段成比例常的辅助线—平行线►题型07平行线分线段成比例常的辅助线—垂线命题点三位似图形►题型01位似图形的识别►题型02求两个位似图形的相似比►题型03求位似图形的对应坐标►题型04已知位似图形的相似比求线段长度►题型05求位似图形的周长►题型06求位似图形的面积►题型07在坐标系中画位似中心►题型08在坐标系中画位似图形试卷第=page11页,共=sectionpages33页
01考情透视·目标导航中考考点考查频率新课标要求比例的性质★了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割平行线分线段成比例★★掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例位似★★了解图形的位似,知道利用位似可以将一个图形放大或缩小【考情分析】在中考中,该模块内容常出现在选择题、填空题,较为简单.本专题内容是下一节相似三角形的基础,需要学生在复习时加以重视.02知识导图·思维引航03考点突破·考法探究考点一比例线段及有关性质1.两条线段的比定义:如果选用同一长度单位的两条线段a,b的长分别是m和n,就说两条线段的比是a:b=m:n,或写成,和数的比一样,两条线段的比a:b中a叫做比的前项,b叫做比的后项.(两条线段长度的比叫做这两条线段的比)【易错点】1)“线段的比”与“线段的比值”区别:线段的比是运算,线段的比值是一个结果,是一个数;2)求两条线段的比时,须统一成相同的单位,最终的比值与单位无关,比值没有单位;3)线段的比,最终要化成最简整数比.2.比例线段比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.四条线段a,b,c,d,如果,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项.比例中项:如果比例线段的内项是两条相同的线段,即,那么线段b叫做线段a,c的比例中项.【补充】1)若a:b=b:c,则b是a,c的比例中项,所以.2)若线段a:线段b=线段b:线段c,则线段b是线段a,c的比例中项,所以.3.比例的基本性质:1)基本性质:QUOTE2)推论:3)合比性质:,分比性质:合分比性质:QUOTEQUOTEQUOTE4)等比性质:如果5)黄金分割定义:如图,点B把线段AC分割成AB和BC两部分(AB>BC),满足(此时线段AB是线段AC,BC的比例中项),那么称点B为线段AC的黄金分割点,AB与AC(或BC与AB)的比成为黄金比,它们的比值为,近似值为0.618.【补充】1)黄金分割是以线段的比例中项来定义的;2),0.618又被称为黄金分割数;1.(2023·广东·中考真题)我国著名数学家华罗庚曾为普及优选法作出重要贡献,优选法中有一种0.618法应用了(
)A.黄金分割数 B.平均数 C.众数 D.中位数2.(2023·四川甘孜·中考真题)若xy=2,则x−y3.(2023·浙江·中考真题)小慧同学在学习了九年级上册“4.1比例线段”3节课后,发现学习内容是一个逐步特殊化的过程,请在横线上填写适当的数值,感受这种特殊化的学习过程.图中横线处应填:
4.(24-25九年级上·上海普陀·阶段练习)在比例尺是1:300000的地图上,如果某条道路长约为4cm,那么它的实际长度约为km5.(2022·江苏镇江·中考真题)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的倍.考点二平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.1)示例:如图,所得的对应线段成比例的有等等.2)对应线段成比例可用语言形象表示:等等.推论:平行于三角形一边的直线与其它两边(或两边的延长线)相交,截得的对应线段成比例.如图,若DE∥BC,则有1.(2022·山东东营·中考真题)如图,点D为△ABC边AB上任一点,DE∥BC交AC于点E,连接BE、CD相交于点F,则下列等式中不成立的是(A.ADDB=AEEC B.DEBC=2.(2023·江苏·中考真题)小明按照以下步骤画线段AB的三等分点:画法图形1.以A为端点画一条射线;2.用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;3.过点C、D分别画BE的平行线,交线段AB于点M、N,M、N就是线段AB的三等分点.
这一画图过程体现的数学依据是(
)A.两直线平行,同位角相等B.两条平行线之间的距离处处相等C.垂直于同一条直线的两条直线平行D.两条直线被一组平行线所截,所得的对应线段成比例3.(2023·北京·中考真题)如图,直线AD,BC交于点O,AB∥EF∥CD.若AO=2,OF=1,FD=2.则BEEC的值为
4.(2023·吉林·中考真题)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD=3,则
A.25 B.12 C.355.(2022·四川巴中·中考真题)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为(A.4 B.5 C.6 D.7QUOTEQUOTE考点三位似图形1.位似图形定义:如果两个图形不仅是相似图形,且对应点连线相交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心.【概念混淆】位似图形一定是相似图形,而相似图形不一定是位似图形.判断位似图形的方法:首先看这两个图形是否相似,再看对应点的连线是否经过位似中心.2.位似图形的性质1)位似图形的所有对应点的连线所在的直线相交与一点.2)位似图形的对应线段平行(或在同一条直线上)且比相等.3)位似图形上任意一对对应点到位似中心的距离之比等于相似比.4)位似图形是相似图形,具有相似图形的一切性质.5)一对对应边与位似中心(不在同一直线上)形成的两个三角形相似3.画位似图形的一般步骤:1)确定位似中心.2)连接位似中心和原图的关键点并延长.3)根据位似比,确定所作的位似图形的关键点.4)顺次连接上述各点,得到放大或缩小后的图形.注意事项:1)两个位似图形的位似中心,有一个.2)两个位似图形的位似中心可能位于图形的内部、外部或边上.3)两个位似图形可能位于位似中心的两侧,也可能位于位似中心的同侧.(即画位似图形时,注意关于某点的位似图形有两个.)4.位似变换的坐标特征一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).【小结】以原点为位似中心的位似图形的坐标符号变化:若两个图形在原点同侧,则对应点的横、纵坐标符号相同;若两个图形在原点异侧,则对应点的横、纵坐标符号相反.1.(2022·宁夏·中考真题)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换(
)
A.平移 B.轴对称 C.旋转 D.位似2.(2024绥化市一模)下列相似图形不是位似图形的是(
)A.B.C.D.3.(2024·黑龙江绥化·中考真题)如图,矩形OABC各顶点的坐标分别为O0,0,A3,0,B3,2,C0,2,以原点O为位似中心,将这个矩形按相似比13
A.9,4 B.4,9 C.1,32 4.(2024·四川凉山·中考真题)如图,一块面积为60 cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O的照射下形成的投影是△A1B1A.90 cm2 B.135 cm25.(2024·宁夏银川·三模)如图,△ABC在平面直角坐标系内,顶点坐标分别为A−1,2,B−3,3,(1)画出△ABC绕O点逆时针旋转90°的△A(2)以A为位似中心,在网格中画出△ADE,使△ADE与△ABC位似且面积比为4:1.;04题型精研·考向洞悉命题点一比例的性质►题型01利用比例的性质求解1.(2024·四川成都·中考真题)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为2.(2021·黑龙江大庆·中考真题)已知x2=y3.(2024·江苏扬州·三模)已知线段a=7+1,b=7−1,则a,4.(2024·湖南益阳·模拟预测)小明家乡有一小山,他查阅资料得到该山“等高线示意图”(如图所示),山上有三处观景台A,B,C在同一直线上,将这三点标在“等高线示意图”后,刚好都在相应的等高线上,设A、B两地的实际直线距离为m,B、C两地的实际直线距离为n,则mn的值为5.(2022·湖南衡阳·中考真题)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(
)(结果精确到0.01m.参考数据:2≈1.414,3A.0.73m B.1.24m C.1.37m6.(2021·四川内江·中考真题)已知非负实数a,b,c满足a−12=b−23=3−c4,设S=a+2b+3c的最大值为mQUOTEQUOTEQUOTE►题型02黄金分割1.(2023·四川达州·中考真题)如图,乐器的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,即AC2=AB⋅BC,支撑点D是靠近点A的黄金分割点,则两个支撑点C,D2.(2024·山西·中考真题)黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且BCAB=5−13.(2022·陕西·中考真题)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE4.(2024·湖南长沙·模拟预测)黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为5−12.这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.如图,乐器上的一根弦长AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为5.(2020·四川泸州·中考真题)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的段GN的比例中项,即满足MGMN=GNMG=5−12,后人把5−12这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,BC=4,若
A.10−45 B.35−5 C.5−26.(2023·宁夏银川·一模)如图①,点C把线段AB分成两部分(AC>BC),若ACAB=BCAC,那么称点类似的,可以定义“黄金分割线”:直线l把一个面积为S的图形分成面积为S1和S2的两部分(S1>(1)如图②,在△ABC中,若点D是线段AB的黄金分割点(BD>AD),线段CD所在直线是△ABC的黄金分割线吗?为什么?(2)在(1)的条件下,如图③,过点C作一条直线交BD边于点E,过点D作DF∥EC交△ABC的一边于点F,连接EF,交CD于点①S△CFG______S△EDG(填“>”“<”或“②EF是△ABC的黄金分割线吗?为什么?命题点二平行线分线段成比例►题型01由平行线分线段成比例判断式子正误两条直线被一组平行线所截,所得的对应线段成比例,对应线段成比例可用语言形象表示:等等.1.(2024·黑龙江哈尔滨·三模)如图,在△ABC中,点D、E在边AB上,点F、G在边BC上,AC∥DG∥EF,点H为AF与A.AHHF=CGC.CGBF=AD2.(2023·山西吕梁·一模)如图,在△ABC中,DE∥AC,DF∥BC.则下列比例中错误的是(A.ADBD=DFBC B.ADBD=3.(2023·北京海淀·三模)如图,在平行四边形ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是(
)
A.∠AEF=∠DEC B.FA:CD=AE:BCC.FA:AB=FE:EC D.AB=DC4.(2021·广东·二模)如图,在△ABC中,点D是AB边上的一点.以B为圆心,以一定长度为半径画弧,分别交AB、BC于点F、G,以D为圆心,以相同的半径画弧,交AD于点M,以M为圆心,以FG的长度为半径画弧,交MN于点N,连接DN并延长交AC于点E.则下列式子中错误的是()A.ADBD=AEEC B.ABBD=►题型02平行线分线段成比例1.(2021·四川甘孜·中考真题)如图,直线l1∥l2∥l3,直线a,b与l1,A.4 B.6 C.7 D.122.(2024·四川成都·一模)如图,l1∥l2∥QUOTE►题型03平行线分线段成比例—A型模型介绍A型X型图示几何表达∵DE∥BC∴∵DE∥BC∴1.(2024·吉林长春·三模)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,CE交DG于点H.若AC=12,则GH的长为.2.(2022·山东临沂·中考真题)如图,在△ABC中,DE∥BC,ADDB=23,若A.65 B.125 C.1853.(2023·湖北恩施·中考真题)如图,在△ABC中,DE∥BC分别交AC,AB于点D,E,EF∥AC交BC于点F,
A.165 B.167 C.24.(2023·湖南岳阳·中考真题)如图,在⊙O中,AB为直径,BD为弦,点C为BD的中点,以点C为切点的切线与AB的延长线交于点E.
(1)若∠A=30°,AB=6,则BD的长是(结果保留π);(2)若CFAF=13►题型04由平行线分线段成比例—X型1.(2023·北京·中考真题)如图,直线AD,BC交于点O,AB∥EF∥CD.若AO=2,OF=1,FD=2.则BEEC的值为
2.(2022·北京·中考真题)如图,在矩形ABCD中,若AB=3,AC=5,AFFC=143.(2023·四川雅安·中考真题)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为(
)
A.4 B.6 C.8 D.104.(2024·江苏苏州·二模)如图,在△ABC中,D是边AB上一点,过点D作DE∥BC交AC于点E,过点B作AC的平行线交ED的延长线于点F,连接FC交AB于点G,设△ABC的面积为S1,△FCB的面积为S2,△FBG的面积为S3,若5.(2024·浙江·模拟预测)如图1,在正方形ABCD中,E为BC延长线上一点,连接AE交对角线BD于F,交CD于G.(1)若AF=4,(2)探索AF,(3)如图2,连接ED,求EDEA►题型05平行线分线段成比例与三角形中位线综合1.(2022·湖南湘西·模拟预测)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,OE∥AB,交BC于点E,OE=2.5,则AC的长为.2.(2023·内蒙古赤峰·中考真题)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE的周长和面积分别是(
A.16,6 B.18,18 C.16.12 D.12,163.(2020·陕西·中考真题)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()
A.52 B.32 C.34.(2023·广东佛山·模拟预测)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为►题型06平行线分线段成比例常的辅助线—平行线当几何图形中所求线段的比与已知条件没有明确的联系时,可以过某一点作平行线,分离图形,构造出“A型”或“X型”,得出与已知和未知线段相关联的成比例线段,从而解决问题.有效构建,准确识别是处理此类问题的关键.1.(2023·安徽宿州·一模)如图,在△ABC中,CG平分∠ACB,过点A作AH⊥CG交BC于点H,且H是BC的中点.若AH=4,CG=6,则AB的长为2.(2022·湖北襄阳·中考真题)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=33,则△ABC的周长为.3.(2023·安徽宿州·一模)如图,在△ABC中,CG平分∠ACB,过点A作AH⊥CG交BC于点H,且H是BC的中点.若AH=4,CG=6,则AB的长为4.(2024·北京·三模)在△ABC中,∠ABC=90°,AB=BC,点D为平面内一点.(1)如图1,若点D在线段BC上,且∠BAD=∠CAD,求tan∠BAD(2)如图2,若点D为△ABC内部一点,且∠BDC=135°,连接AD,点E为AD的中点,连接BE,用等式表示线段BD,BE,CD的数量关系,并证明:(3)若点D满足∠BDC=135°,当AB=2时,请直接写出AD►题型07平行线分线段成比例常的辅助线—垂线1.(2022·浙江丽水·中考真题)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AB=3,则线段BC的长是(
)A.23 B.1 C.322.(2024·安徽蚌埠·二模)如图,在平面直角坐标系xOy中,点A0,4,B3,4,将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是(1)分别记矩形OECA和▱OEDB的面积为S1,S2,则S1S2(填“>(2)若函数y=kxk≠0的图象经过点C和DE的中点F,则k
3.(2024·江苏南通·中考真题)如图,在Rt△ABC中,∠ACB=90°,AC=BC=5.正方形DEFG的边长为5,它的顶点D,E,G分别在△ABC的边上,则BG的长为4.(2024·广东深圳·中考真题)如图,在△ABC中,AB=BC,tan∠B=512,D为BC上一点,且满足BDCD=85,过D作DE⊥AD交5.(2023·浙江宁波·中考真题)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连接AD,BE=3,BD=35.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为
6.(2020·四川绵阳·中考真题)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.47.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANA.13 B.14 C.159.(2024·北京·模拟预测)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点G,过D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当∠BAC=60°,AB=8时,求命题点三位似图形►题型01位似图形的识别识别两个相似多边形是不是位似图形,关键是看两个相似多边形的对应顶点所在的直线是否相交于一点,相交于一点的就是位似图形,交点就是位似中心;否则不是位似图形.1.(2020·河北·中考真题)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是(
)A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR2.(2024·贵州安顺·二模)如图,在正方形网格中,△ABC的位似图形可以是(
)A.△BDE B.△FDE C.△DGF D.△BGF3.(2024·山西晋中·模拟预测)如图,是幻灯机放映图片的示意图,在幻灯机放映图片的过程中,这两张图片之间的关系是(
)A.对称 B.平移 C.旋转 D.位似►题型02求两个位似图形的相似比1.(2023·广西河池·模拟预测)如图,以点O为位似中心,将ΔOAB放大后得到ΔOCD,OA=2 , AC=32.(2024·贵州贵阳·一模)在平面直角坐标系中,△ABC与△A'B'C'位似,位似中心是原点O,点B与点B'是对应顶点,B,B'的坐标分别为(1,2),A.2:1 B.1:2 C.3.(2024·重庆江津·模拟预测)如图,△ABC与△DEF是以点O为位似中心的位似图形,若△ABC与△DEF的面积比为4:9,则OA:OD为(
)A.4:9 B.2:3 C.2:1 D.3:14.(2024·四川成都·二模)如图,△ABC和△DEF是以点O为位似中心的位似图形.若△ABC和△DEF的周长之比为1:3,则OC:OF=.5.(2023·四川巴中·一模)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A、B恰好分别落在函数y=−1xx<0,y=9xA.13 B.3310 C.10QUOTE►题型03求位似图形的对应坐标一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).【小结】以原点为位似中心的位似图形的坐标符号变化:若两个图形在原点同侧,则对应点的横、纵坐标符号相同;若两个图形在原点异侧,则对应点的横、纵坐标符号相反.1.(2024·山西·中考真题)如图,在平面直角坐标系的第一象限内,△A'B'C'与△ABC关于原点O位似,相似比为2∶1,点A的坐标为2.(2024·浙江·中考真题)如图,在平面直角坐标系中,△ABC与△A'B'C'是位似图形,位似中心为点O.若点A(−3,1)的对应点为A'A.(−4,8) B.(8,−4) C.(−8,4) D.(4,−8)3.(2023·辽宁盘锦·中考真题)如图,△ABO的顶点坐标是A2,6,B3,1,O0,0,以点O为位似中心,将△ABO缩小为原来的13,得到△A
4.(2023·辽宁·中考真题)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O0,0,A1,0,B2,3,C
5.(2023·湖北鄂州·中考真题)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且ABA
►题型04已知位似图形的相似比求线段长度位似图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,对应边互相平行或共线,利用位似比求线段的长度与利用相似三角形的对应边成比例求线段的长度一样,要找准对应关系.1.(2020·重庆·中考真题)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为(
)A.5 B.2 C.4 D.22.(2024·云南·模拟预测)如图,在平面直角坐标系中,△ABC与△DEF是以坐标原点O为位似中心的位似图形,若A−2,0,D3,0,且AC=4,则线段DF
A.6 B.5 C.4 D.33.(2024·河北·模拟预测)如图,嘉嘉利用空的薯片筒、塑料膜等器材自制了一个可以探究小孔成像特点的物理实验装置,他在薯片筒的底部中央打上一个小圆孔O,再用半透明的塑料膜蒙在空筒的口上作光屏,可知得到的像与蜡烛火焰位似,其位似中心为O,其中薯片筒的长度为16cm.蜡烛火焰AB高为6cm,若像高CD为3cm
A.254cm B.25cm C.32cm4.(2020·河北石家庄·模拟预测)如图,有一斜坡OA,已知斜坡上一点A的坐标为A23,2,过点A作AB⊥x轴,垂足为点B,将△AOB以坐标原点0为位似中心缩小为原图形的12,得到△COD,则OC的长度是►题型05求位似图形的周长1.(2024·吉林长春·一模)如图,六边形ABCDEF和六边形A1B1C1D1E1F1是以点.O为位似中心的位似图形,2.(2024·湖南衡阳·二模)如图,△ABC与△DEF是位似图形,位似中心为点O.若OA:AD=1:3,△ABC的周长为9,则△DEF的周长为(
)A.18 B.27 C.32 D.363.(2023·重庆南岸·一模)正方形ODEF与正方形OABC位似,点O为位似中心,OE:OB=1:4,则正方形ODEF与正方形OABC的周长比为(
)
A.1:3 B.1:4 C.1:9 D.1:16►题型06求位似图形的面积1.(2023·陕西西安·模拟预测)如图,点A在反比例函数y=4x的图象上,AC⊥y轴于点C,以O为位似中心把四边形OBAC放大得到四边形OB'A'C2.(2024·陕西渭南·二模)如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A、A'的坐标分别为(−1,0)、(−2.0)
A.18 B.12 C.24 D.93.(2023·广东佛山·三模)如图,以点O为位似中心,作四边形ABCD的位似图形A'B'C'D',已知OA
A.3 B.6 C.9 D.18►题型07在坐标系中画位似中心1.(2023·四川遂宁·中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC、△DEF成位似关系,则位似中心的坐标为(
A.(−1,0) B.(0,0) C.(0,1) 2.(2024·山西忻州·三模)在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,△ABC与△A'B'C'的顶点都在正方形网格的格点上,且
3.(2024·辽宁抚顺·三模)如图,正方形网格图中的△ABC与△A'B'C'是位似关系图,则位似中心是点R、点P、点►题型08在坐标系中画位似图形1.(2021·黑龙江绥化·中考真题)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,并且使所作的位似图形与△OAB的相似比等于12(2)将△OAB以O为旋转中心,逆时针旋转90°,得到△OA1B1,作出2.(2020·辽宁丹东·中考真题)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个ΔA1B1C1,使它与ΔABC位似,且相似比为2:1,然后再把(1)画出ΔA1B(2)画出ΔA2B2C3.(2020·宁夏·中考真题)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A(2)画出△ABC以点O为位似中心,位似比为1∶2的△A
第四章三角形第20讲图形的相似与位似(思维导图+3考点+3命题点17种题型(含6种解题技巧))TOC\o"1-1"\n\h\z\u01考情透视·目标导航02知识导图·思维引航03考点突破·考法探究考点一比例线段及有关性质考点二平行线分线段成比例考点三位似图形04题型精研·考向洞悉命题点一比例的性质►题型01利用比例的性质求解►题型02黄金分割命题点二平行线分线段成比例►题型01由平行线分线段成比例判断式子正误►题型02平行线分线段成比例►题型03平行线分线段成比例—A型►题型04由平行线分线段成比例—X型►题型05平行线分线段成比例与三角形中位线综合►题型06平行线分线段成比例常的辅助线—平行线►题型07平行线分线段成比例常的辅助线—垂线命题点三位似图形►题型01位似图形的识别►题型02求两个位似图形的相似比►题型03求位似图形的对应坐标►题型04已知位似图形的相似比求线段长度►题型05求位似图形的周长►题型06求位似图形的面积►题型07在坐标系中画位似中心►题型08在坐标系中画位似图形
01考情透视·目标导航中考考点考查频率新课标要求比例的性质★了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割平行线分线段成比例★★掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例位似★★了解图形的位似,知道利用位似可以将一个图形放大或缩小【考情分析】在中考中,该模块内容常出现在选择题、填空题,较为简单.本专题内容是下一节相似三角形的基础,需要学生在复习时加以重视.02知识导图·思维引航03考点突破·考法探究考点一比例线段及有关性质1.两条线段的比定义:如果选用同一长度单位的两条线段a,b的长分别是m和n,就说两条线段的比是a:b=m:n,或写成,和数的比一样,两条线段的比a:b中a叫做比的前项,b叫做比的后项.(两条线段长度的比叫做这两条线段的比)【易错点】1)“线段的比”与“线段的比值”区别:线段的比是运算,线段的比值是一个结果,是一个数;2)求两条线段的比时,须统一成相同的单位,最终的比值与单位无关,比值没有单位;3)线段的比,最终要化成最简整数比.2.比例线段比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.四条线段a,b,c,d,如果,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项.比例中项:如果比例线段的内项是两条相同的线段,即,那么线段b叫做线段a,c的比例中项.【补充】1)若a:b=b:c,则b是a,c的比例中项,所以.2)若线段a:线段b=线段b:线段c,则线段b是线段a,c的比例中项,所以.3.比例的基本性质:1)基本性质:QUOTE2)推论:3)合比性质:,分比性质:合分比性质:QUOTEQUOTEQUOTE4)等比性质:如果5)黄金分割定义:如图,点B把线段AC分割成AB和BC两部分(AB>BC),满足(此时线段AB是线段AC,BC的比例中项),那么称点B为线段AC的黄金分割点,AB与AC(或BC与AB)的比成为黄金比,它们的比值为,近似值为0.618.【补充】1)黄金分割是以线段的比例中项来定义的;2),0.618又被称为黄金分割数;1.(2023·广东·中考真题)我国著名数学家华罗庚曾为普及优选法作出重要贡献,优选法中有一种0.618法应用了(
)A.黄金分割数 B.平均数 C.众数 D.中位数【答案】A【分析】根据黄金分割比可进行求解.【详解】解:0.618为黄金分割比,所以优选法中有一种0.618法应用了黄金分割数;故选A.【点睛】本题主要考查黄金分割比,熟练掌握黄金分割比是解题的关键.2.(2023·四川甘孜·中考真题)若xy=2,则x−y【答案】1【分析】根据比例的性质解答即可.【详解】解:∵xy∴x−yy故答案为:1.【点睛】本题考查了比例的性质,解决本题的关键是掌握比例的性质.3.(2023·浙江·中考真题)小慧同学在学习了九年级上册“4.1比例线段”3节课后,发现学习内容是一个逐步特殊化的过程,请在横线上填写适当的数值,感受这种特殊化的学习过程.图中横线处应填:
【答案】2【分析】根据题意得出a=2【详解】解:∵a∴a=∴ac故答案为:2.【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.4.(24-25九年级上·上海普陀·阶段练习)在比例尺是1:300000的地图上,如果某条道路长约为4cm,那么它的实际长度约为km【答案】12【分析】本题主要考查了比例尺,根据比例尺=【详解】因为比例尺为1:300000,且图上距离是4cm所以实际距离是4×300000=1200000cm=12km故答案为:12.5.(2022·江苏镇江·中考真题)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的倍.【答案】1.2【分析】设被称物的重量为a,砝码的重量为1,根据图中可图列出方程即可求解.【详解】解:设被称物的重量为a,砝码的重量为1,依题意得,2.5a=3×1,解得a=1.2,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.考点二平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.1)示例:如图,所得的对应线段成比例的有等等.2)对应线段成比例可用语言形象表示:等等.推论:平行于三角形一边的直线与其它两边(或两边的延长线)相交,截得的对应线段成比例.如图,若DE∥BC,则有1.(2022·山东东营·中考真题)如图,点D为△ABC边AB上任一点,DE∥BC交AC于点E,连接BE、CD相交于点F,则下列等式中不成立的是(A.ADDB=AEEC B.DEBC=【答案】C【分析】根据平行线分线段成比例定理即可判断A,根据相似三角形的性质即可判断B、C、D.【详解】解:∵DE∥∴ADBD=AEEC,△DEF∽△CBF,△∴DECB=DF∴EFBF故选C.【点睛】本题主要考查了相似三角形的性质与判定,平行线分线段成比例定理,熟知相似三角形的性质与判定,平行线分线段成比例定理是解题的关键.2.(2023·江苏·中考真题)小明按照以下步骤画线段AB的三等分点:画法图形1.以A为端点画一条射线;2.用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;3.过点C、D分别画BE的平行线,交线段AB于点M、N,M、N就是线段AB的三等分点.
这一画图过程体现的数学依据是(
)A.两直线平行,同位角相等B.两条平行线之间的距离处处相等C.垂直于同一条直线的两条直线平行D.两条直线被一组平行线所截,所得的对应线段成比例【答案】D【分析】根据两条直线被一组平行线所截,所得的对应线段成比例,即可求解.【详解】解:由步骤2可得:C、D为线段AE的三等分点步骤3中过点C、D分别画BE的平行线,由两条直线被一组平行线所截,所得的对应线段成比例得:M、N就是线段AB的三等分点故选:D【点睛】本题考查两条直线被一组平行线所截,所得的对应线段成比例.掌握相关结论即可.3.(2023·北京·中考真题)如图,直线AD,BC交于点O,AB∥EF∥CD.若AO=2,OF=1,FD=2.则BEEC的值为
【答案】3【分析】由平行线分线段成比例可得,BOOE=AOOF=21,OE【详解】∵AB∥EF∥CD,
AO=2,OF=1,∴BO∴BO=2OE,∵OE∴EC=2OE,∴BE故答案为:32【点睛】本题考查了平行线分线段成比例的知识点,根据平行线分线段成比例找出线段之间的关系是解决本题的关键.4.(2023·吉林·中考真题)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD=3,则
A.25 B.12 C.35【答案】A【分析】利用平行线分线段成比例定理的推论得出AEAC【详解】解:∵△ABC中,DE∥∴AEAC∵AD=2∴AEAC故选:A.【点睛】本题考查平行线分线段成比例定理的推论,解题关键是牢记“平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例”.5.(2022·四川巴中·中考真题)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为(A.4 B.5 C.6 D.7【答案】C【分析】根据CD∥OB得出ACAO=CDOB,根据AC:OC=1:2,得出ACAO【详解】解:∵CD∥∴ACAO∵AC:OC=1:2,∴ACAO∵C、D两点纵坐标分别为1、3,∴CD=3−1=2,∴2OB解得:OB=6,∴B点的纵坐标为6,故C正确.故答案为:6.【点睛】本题主要考查了平行线的性质,平面直角坐标系中点的坐标,根据题意得出ACAOQUOTEQUOTE考点三位似图形1.位似图形定义:如果两个图形不仅是相似图形,且对应点连线相交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心.【概念混淆】位似图形一定是相似图形,而相似图形不一定是位似图形.判断位似图形的方法:首先看这两个图形是否相似,再看对应点的连线是否经过位似中心.2.位似图形的性质1)位似图形的所有对应点的连线所在的直线相交与一点.2)位似图形的对应线段平行(或在同一条直线上)且比相等.3)位似图形上任意一对对应点到位似中心的距离之比等于相似比.4)位似图形是相似图形,具有相似图形的一切性质.5)一对对应边与位似中心(不在同一直线上)形成的两个三角形相似3.画位似图形的一般步骤:1)确定位似中心.2)连接位似中心和原图的关键点并延长.3)根据位似比,确定所作的位似图形的关键点.4)顺次连接上述各点,得到放大或缩小后的图形.注意事项:1)两个位似图形的位似中心,有一个.2)两个位似图形的位似中心可能位于图形的内部、外部或边上.3)两个位似图形可能位于位似中心的两侧,也可能位于位似中心的同侧.(即画位似图形时,注意关于某点的位似图形有两个.)4.位似变换的坐标特征一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).【小结】以原点为位似中心的位似图形的坐标符号变化:若两个图形在原点同侧,则对应点的横、纵坐标符号相同;若两个图形在原点异侧,则对应点的横、纵坐标符号相反.1.(2022·宁夏·中考真题)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换(
)
A.平移 B.轴对称 C.旋转 D.位似【答案】D【分析】根据位似的定义,即可解决问题.【详解】根据位似的定义可知:三角尺与影子之间属于位似.故选:D.【点睛】本题考查了生活中位似的现象,解决本题的关键是熟记位似的定义.2.(2024绥化市一模)下列相似图形不是位似图形的是(
)A.B.C.D.【答案】D【分析】本题考查位似图形的识别,注意:①两个图形必须是相似图形;②对应点的连线都经过同一点;③对应边平行(或共线).据此逐项判断即可求得答案,注意排除法在解选择题中的应用.【详解】解:根据位似图形的定义,选项A,B,C是位似图形,位似中心是交点,不符合题意;选项D中,对应边AB、DE不平行,故不是位似图形,符合题意.故选:D.3.(2024·黑龙江绥化·中考真题)如图,矩形OABC各顶点的坐标分别为O0,0,A3,0,B3,2,C0,2,以原点O为位似中心,将这个矩形按相似比13
A.9,4 B.4,9 C.1,32 【答案】D【分析】本题考查了位似图形的性质,根据题意B横纵的坐标乘以13【详解】解:依题意,B3,2,以原点O为位似中心,将这个矩形按相似比13缩小,则顶点B故选:D.4.(2024·四川凉山·中考真题)如图,一块面积为60 cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O的照射下形成的投影是△A1B1A.90 cm2 B.135 cm2【答案】D【详解】解:∵一块面积为60 cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O的照射下形成的投影是△∴OBO∴位似图形由三角形硬纸板与其灯光照射下的中心投影组成,相似比为2:5,∵三角形硬纸板的面积为60 ∴S△ABC∴△A1B故选:D.5.(2024·宁夏银川·三模)如图,△ABC在平面直角坐标系内,顶点坐标分别为A−1,2,B−3,3,(1)画出△ABC绕O点逆时针旋转90°的△A(2)以A为位似中心,在网格中画出△ADE,使△ADE与△ABC位似且面积比为4:1.【答案】(1)见解析(2)见解析【分析】本题主要考查了中心对称作图和位似作图,解题的关键是作出对应点.(1)根据旋转的性质作出点A、B、C的对称点A1、B1、(2)以A为位似中心,作出点A、B、C的位似点,然后顺次连接即可.【详解】(1)解:如图,△A;(2)解:如图,△AD1E04题型精研·考向洞悉命题点一比例的性质►题型01利用比例的性质求解1.(2024·四川成都·中考真题)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为【答案】3【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得x【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38∴xx+y=3故答案为:352.(2021·黑龙江大庆·中考真题)已知x2=y【答案】5【分析】设x2=y3=z4【详解】解:设x2则x=2k,y=3k,z=4k,故x2故答案为:56【点睛】本题考查了比例的性质,正确用同一字母表示各数是解决此类题的关键.3.(2024·江苏扬州·三模)已知线段a=7+1,b=7−1,则a,【答案】6【分析】本题主要考查了比例中项,根据比例中项的定义直接列式求值即可得出答案.【详解】解:设a,b的比例中项线段为x,∵线段a=7+1,∴x2∴x=6∴a,b的比例中项线段等于6,故答案为:6.4.(2024·湖南益阳·模拟预测)小明家乡有一小山,他查阅资料得到该山“等高线示意图”(如图所示),山上有三处观景台A,B,C在同一直线上,将这三点标在“等高线示意图”后,刚好都在相应的等高线上,设A、B两地的实际直线距离为m,B、C两地的实际直线距离为n,则mn的值为【答案】2【分析】本题考查了比例线段.根据题意,得出A、B两地的实际直线距离,B、C两地的实际直线距离,然后求根据比例线段求值即可.【详解】解:由题意,得A、B两地的实际直线距离为400−200=200,B、C两地的实际直线距离为200−100=100,∴m:n=200:100=2:1,即mn故答案为:2.5.(2022·湖南衡阳·中考真题)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(
)(结果精确到0.01m.参考数据:2≈1.414,3A.0.73m B.1.24m C.1.37m【答案】B【分析】设雕像的下部高为xm,由黄金分割的定义得x2【详解】解:设雕像的下部高为xm,则上部长为(2-x)m,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,雷锋雕像为2m,∴x2∴x=5即该雕像的下部设计高度约是1.24m,故选:B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.6.(2021·四川内江·中考真题)已知非负实数a,b,c满足a−12=b−23=3−c4,设S=a+2b+3c的最大值为m【答案】1116【分析】设a−12=b−23=3−c4=k,则a=2k+1,b=3k+2,c=3−4k,可得S=−4k+14;利用a,【详解】解:设a−12=b−23=3−c4∴S=a+2b+3c=2k+1+2(3k+2)+3(3−4k)=−4k+14.∵a,b,c为非负实数,∴2k+1⩾03k+2⩾0解得:−1∴当k=−12时,S取最大值,当k=3∴m=−4×(−1n=−4×3∴nm故答案为:11【点睛】本题主要考查了比例的性质,解不等式组,非负数的应用等,设a−12QUOTEQUOTEQUOTE►题型02黄金分割1.(2023·四川达州·中考真题)如图,乐器的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,即AC2=AB⋅BC,支撑点D是靠近点A的黄金分割点,则两个支撑点C,D【答案】80【分析】本题考查了黄金分割,利用黄金分割的等积式得一元二次方程是解题的关键.设AC=xcm,则BC=80−xcm,由AC2=BC⋅AB得x2=8080−x【详解】解:设AC=xcm,则BC=∵AC∴x解得x1∴AC=40同理可求,BD=40∴AD=AB−BD=80−40∴CD=AC−AD=40故答案为:8052.(2024·山西·中考真题)黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且BCAB=5−1【答案】5−1/【分析】本题考查了黄金分割的定义,正方形的性质及矩形的判定与性质,先证明四边形ABPN是矩形,根据黄金分割的定义可得BCAB【详解】∵四边形MNPQ是正方形,∴∠N=∠P=90°,又∵AB∥∴∠BAN+∠N=180°,∴∠BAN=90°,∴四边形ABPN是矩形,∴AB=NP=2cm又∵BCAB∴BC=5故答案为:5−13.(2022·陕西·中考真题)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE【答案】(5−1)【分析】根据点E是AB的黄金分割点,可得AEBE【详解】∵点E是AB的黄金分割点,∴AEBE∵AB=2米,∴BE=(故答案为:(5−1【点睛】本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.4.(2024·湖南长沙·模拟预测)黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为5−12.这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.如图,乐器上的一根弦长AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为【答案】8【分析】本题主要考查了黄金分割的定义,根据黄金分割的定义分别求出AC,DB,再根据线段的和差关系进行计算即可解答.【详解】解:∵点C是靠近点B的黄金分割点,AB=80cm∴AC=5∵点D是靠近点A的黄金分割点,AB=80cm∴DB=∴CD=AC+BD−AB=240∴支撑点C,D之间的距离为80故答案为:805.(2020·四川泸州·中考真题)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的段GN的比例中项,即满足MGMN=GNMG=5−12,后人把5−12这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,BC=4,若
A.10−45 B.35−5 C.5−2【答案】A【分析】作AF⊥BC,根据等腰三角形ABC的性质求出AF的长,再根据黄金分割点的定义求出BE、CD的长度,得到△ADE中DE的长,利用三角形面积公式即可解题.【详解】解:过点A作AF⊥BC,∵AB=AC,∴BF=12在Rt△ABF,AF=AB∵D是边BC的两个“黄金分割”点,∴CDBC=5解得CD=25同理BE=25∵CE=BC-BE=4-(25-2)=6-2∴DE=CD-CE=45-8,∴S△ABC=12×DE×AF=12故选:A.
【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DE和AF的长是解题的关键。6.(2023·宁夏银川·一模)如图①,点C把线段AB分成两部分(AC>BC),若ACAB=BCAC,那么称点类似的,可以定义“黄金分割线”:直线l把一个面积为S的图形分成面积为S1和S2的两部分(S1>(1)如图②,在△ABC中,若点D是线段AB的黄金分割点(BD>AD),线段CD所在直线是△ABC的黄金分割线吗?为什么?(2)在(1)的条件下,如图③,过点C作一条直线交BD边于点E,过点D作DF∥EC交△ABC的一边于点F,连接EF,交CD于点①S△CFG______S△EDG(填“>”“<”或“②EF是△ABC的黄金分割线吗?为什么?【答案】(1)线段CD所在直线是△ABC的黄金分割线;理由见解析(2)①=;②EF是△ABC的黄金分割线,理由见解析【分析】本题考查了相似形的综合应用,解题关键在于读懂题意,了解黄金分割线的定义.(1)过点C作CM⊥AB于点M,点D是线段AB的黄金分割点,(BD>AD),根据定义即可求解.(2)①DF∥EC,可知S△CFD②由题意可知,S△BDC【详解】(1)解:线段CD所在直线是△ABC的黄金分割线,理由如下:如图,过点C作CM⊥AB于点M,∵点D是线段AB的黄金分割点,(BD>AD),∴BDAB∴12即S△BDC∴线段CD所在直线是△ABC的黄金分割线;(2)解:①∵DF∥∴S∴S即S△CFG故答案为:=;②EF是△ABC的黄金分割线,理由:由题意可知,S△BDC∵S∴S同理,S△ADC由(1)知,S△BDC则有S四边形∴EF是△ABC的黄金分割线.命题点二平行线分线段成比例►题型01由平行线分线段成比例判断式子正误两条直线被一组平行线所截,所得的对应线段成比例,对应线段成比例可用语言形象表示:等等.1.(2024·黑龙江哈尔滨·三模)如图,在△ABC中,点D、E在边AB上,点F、G在边BC上,AC∥DG∥EF,点H为AF与A.AHHF=CGC.CGBF=AD【答案】D【分析】本题主要考查了平行线分线段成比例定理,根据AC∥【详解】解:∵AC∥∴AHHF∵DG∥∴DBAE∵AC∥∴CGBF∵DG∥∴△BEF相似于△BDG,∴EFGD故选:D.2.(2023·山西吕梁·一模)如图,在△ABC中,DE∥AC,DF∥BC.则下列比例中错误的是(A.ADBD=DFBC B.ADBD=【答案】A【分析】由平行线分线段成比例及相似三角形的判定和性质,即可得出结论.【详解】解:∵DF∥BC,∴ADDB=AF∵DE∥∴∠A=∠BDE,∴△ADF∽△DBE,∴AD∴A选项错误,故选:A.【点睛】本题考查了平行线分线段成比例,相似三角形的判定和性质,平行线的性质,熟练掌握知识点是解题的关键.3.(2023·北京海淀·三模)如图,在平行四边形ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是(
)
A.∠AEF=∠DEC B.FA:CD=AE:BCC.FA:AB=FE:EC D.AB=DC【答案】B【分析】根据已知及平行线分线段成比例定理进行分析,可得CD∥BF,依据平行线成比例的性质即可得到答案.【详解】解:A、根据对顶角相等,此结论正确;B、根据相似三角形的性质定理,得FA:FB=AE:BC,所以此结论错误;C、根据平行线分线段成比例定理得,此项正确;D、根据平行四边形的对边相等,所以此项正确.故选:B.【点睛】此题综合运用了平行四边形的性质以及平行线分线段成比例定理,解决本题的关键是熟练掌握平行线分线段成比例定理.4.(2021·广东·二模)如图,在△ABC中,点D是AB边上的一点.以B为圆心,以一定长度为半径画弧,分别交AB、BC于点F、G,以D为圆心,以相同的半径画弧,交AD于点M,以M为圆心,以FG的长度为半径画弧,交MN于点N,连接DN并延长交AC于点E.则下列式子中错误的是()A.ADBD=AEEC B.ABBD=【答案】C【分析】由平行线分线段成比例可得ADBD=AEEC,ADAB【详解】解:由题意可得:∠ABC=∠ADE,∴DE∥BC,∴ADBD=AEEC,∵DE∥BC,∴△ADE∽△ABC,∴ADAB故选:C.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的性质是解题的关键.►题型02平行线分线段成比例1.(2021·四川甘孜·中考真题)如图,直线l1∥l2∥l3,直线a,b与l1,A.4 B.6 C.7 D.12【答案】B【分析】根据平行线分线段成比例定理得出AB:【详解】解:∵l1∴AB:∵AB:BC=2:3,∴DE=6.故选:B.【点睛】本题主要考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.2.(2024·四川成都·一模)如图,l1∥l2∥【答案】18【分析】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.根据平行线分线段成比例,即可求解.【详解】解:∵l1∴ABBC∵AB=6,DE=5,EF=15,∴6BC解得:BC=18.故答案为:18.QUOTE►题型03平行线分线段成比例—A型模型介绍A型X型图示几何表达∵DE∥BC∴∵DE∥BC∴1.(2024·吉林长春·三模)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,CE交DG于点H.若AC=12,则GH的长为.【答案】2【分析】本题主要考查了平行线的性质,平行线分线段成比例定理,相似三角形的判定与性质,熟练掌握平行线分线段成比例定理和相似三角形的性质是解题的关键.利用平行线的性质得到△BEF∽△BAC,利用相似三角形的性质求得FE的长度,利用平行线分线段成比例定理求得CG=FG,再利用相似三角形的判定与性质解答即可得出结论.【详解】∵点D,E为边AB的三等分点,∴BE∵AC∥EF∴△BEF∽△BAC,∴EF∵AC=12,∴EF=4,∵点D,E为边AB的三等分点,AC∥DG∥EF,∴点F,G为边BC的三等分点,∴CG=FG,∵DG∥EF,∴△CGH∽△CFE,∴GH∴CG=1故答案为:22.(2022·山东临沂·中考真题)如图,在△ABC中,DE∥BC,ADDB=23,若A.65 B.125 C.185【答案】C【分析】由DE∥BC,ADDB【详解】解:∵DE∥BC,∴AD∵AC=6,∴6−CE解得:CE=18故选C【点睛】本题考查的是平行线分线段成比例,证明“ADDB3.(2023·湖北恩施·中考真题)如图,在△ABC中,DE∥BC分别交AC,AB于点D,E,EF∥AC交BC于点F,
A.165 B.167 C.2【答案】A【分析】先证得四边形DEFC是平行四边形,得到DE=FC,再利用平行线截线段成比例列式求出FC即可.【详解】∵DE∥BC,∴四边形DEFC是平行四边形,∴DE=FC,∵EF∥∴FCBF∵BF=8,∴FC=16∴DE=16故选:A.【点睛】此题考查了平行四边形的判定和性质,平行线截线段成比例,正确理解平行线截线段成比例是解题的关键.4.(2023·湖南岳阳·中考真题)如图,在⊙O中,AB为直径,BD为弦,点C为BD的中点,以点C为切点的切线与AB的延长线交于点E.
(1)若∠A=30°,AB=6,则BD的长是(结果保留π);(2)若CFAF=13【答案】2π【分析】(1)连接OC,OD,根据点C为BD的中点,根据已知条件得出∠BOD=120°,然后根据弧长公式即可求解;(2)连接OC,根据垂径定理的推论得出OC⊥BD,EC是⊙O的切线,则OC⊥EC,得出EC∥BD,根据平行线分线段成比例得出EBAB=13,设【详解】解:(1)如图,连接OC,OD,
∵点C为BD的中点,∴BC=又∵∠A=30°,∴∠BOC=∠COD=2∠A=60°,∴∠BOD=120°,∵AB=6,∴OB=1∴lBD故答案为:2π(2)解:如图,连接OC,
∵点C为BD的中点,∴BC=∴OC⊥BD,∵EC是⊙O的切线,∴OC⊥EC,∴EC∴CFAF∵CFAF∴EBAB设EB=2a,则AB=6a,BO=3a,EO=EB+BO=5a,∴EC=EO2∴CEAE故答案为:12【点睛】本题考查了垂径定理,圆周角定理,切线的性质,弧长公式,平行线分线段成比例定理等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.►题型04由平行线分线段成比例—X型1.(2023·北京·中考真题)如图,直线AD,BC交于点O,AB∥EF∥CD.若AO=2,OF=1,FD=2.则BEEC的值为
【答案】3【分析】由平行线分线段成比例可得,BOOE=AOOF=21,OE【详解】∵AB∥EF∥CD,
AO=2,OF=1,∴BO∴BO=2OE,∵OE∴EC=2OE,∴BE故答案为:32【点睛】本题考查了平行线分线段成比例的知识点,根据平行线分线段成比例找出线段之间的关系是解决本题的关键.2.(2022·北京·中考真题)如图,在矩形ABCD中,若AB=3,AC=5,AFFC=14【答案】1【分析】根据勾股定理求出BC,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD中,AD∥BC,∴AEBC=AF∴AE4∴AE=1,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.3.(2023·四川雅安·中考真题)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为(
)
A.4 B.6 C.8 D.10【答案】C【分析】由平行四边形的性质可得GFFC=AGCD,EGEC=BG【详解】∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴GFFC=AG设GF为x,∵EF=1,EC=3,∴EG=1+x,BG=AG+CD,∴x4=AG∴1+x3即8−x=0,得x=8,∴GF=8.故选:C.【点睛】本题考查了平行四边形的性质,平行线分线段成比例的性质,熟练掌握其性质是解题的关键.4.(2024·江苏苏州·二模)如图,在△ABC中,D是边AB上一点,过点D作DE∥BC交AC于点E,过点B作AC的平行线交ED的延长线于点F,连接FC交AB于点G,设△ABC的面积为S1,△FCB的面积为S2,△FBG的面积为S3,若【答案】34【分析】本题考查了平行线等分线段定理,相似三角形的判定和性质,三角形的面积,比例的性质,分别利用平行线等分线段定理,相似三角形的判定和性质及三角形的面积得出S1S2=ABBD,S3S2=【详解】解:∵△ABC与△FBC是等高三角形,且S△FBC∴S1∵DE∥∴ABBD∴S1∵△FBG与△FBC高相同,∴S3S∵BF∥∴△BGF∽△AGC,∴FGCG∴FGCG+FG即FGFC∵DE∥BC,∴四边形BCEF为平行四边形,∴CE=BF,∴FGFC∵DE∥∴BDAB∴BDAB+BD∴S3S∵S1∴S1∴S1∴ABBD∴ABAB+BD∴BDAB∴ADAB故答案为:345.(2024·浙江·模拟预测)如图1,在正方形ABCD中,E为BC延长线上一点,连接AE交对角线BD于F,交CD于G.(1)若AF=4,(2)探索AF,(3)如图2,连接ED,求EDEA【答案】(1)28(2)A(3)5【分析】(1)根据正方形性质以及平行线分线段成比例可得ABDG=AFGF=43,设AB=4x,DG=3x(2)通过平行线分线段成比例AFGF(3)如图,过点B作BH⊥AE于点H,连接DH,证明△ABH∽△AEB,得到DHAD=DEEA,得出点H在以AB为直径的圆上运动,取AB的中点O为圆心,12AB长为半径画圆,则H在⊙O上运动,连接OD交⊙O于点H1,设AB=2a,则OH=OH1=12AB=a,当D【详解】(1)解:∵四边形ABCD为正方形,∴AB∥CD,∴AB设AB=4x,DG=3x,∴AG=A∵AG=AF+FG=7,∴5x=7,∴x=7∴AB=4x=7∴正方形的边长为285(2)AF∵AB∥∴△ABF~△GDF,∴AF∵AD∥∴△BEF~△DAF∴BE∴AF∴AF(3)如图,过点B作BH⊥AE于点H,连接DH,则∠AHB=90°,在正方形ABCD中,AB=AD,∠ABE=90°,∵∠BAH=∠EAB,∴△ABH∽△AEB,∴ABAE=∴AD∴AD又∵∠DAH=∠EAD,∴△ADH∽△AED,∴ADAE=∵∠AHB=90°,∴点H在以AB为直径的圆上运动,取AB的中点O为圆心,12AB长为半径画圆,则H在⊙O上运动,连接OD交⊙O于点设AB=2a,则OH=OH当D,H,O三点共线时,即H与H1∴DH=DH∵DH≥OD−a,OD=O∴DH的最小值为5a−a∴DHAD的最小值为∴DEEA的最小值为【点睛】本题考查了平行线分线段成比例,相似三角形的判定与性质,勾股定理,正方形的性质,圆周角定理,准确作出辅助线,得出当D,H,O三点共线时,即H与H1重合,DH≥OD−a►题型05平行线分线段成比例与三角形中位线综合1.(2022·湖南湘西·模拟预测)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,OE∥AB,交BC于点E,OE=2.5,则AC的长为.【答案】6【分析】本题主要考查了菱形的性质,勾股定理以及三角形中位线定理等知识,熟记各性质是解题的关键.由菱形的性质可得BO=4,AC⊥BD,利用OE为△ABC的中位线求得AB,借助勾股定理求出AO,即可求解.【详解】解:∵菱形ABCD中,对角线AC,BD相交于点O,∴OA=OC=12AC,OB=∵OE∥AB,∴OCOA∴BE=CE,∴OE为△ABC的中位线,∴AB=2OE=5,在Rt△ABO中,由勾股定理得:AO=∴AC=2AO=6,故答案为:6.2.(2023·内蒙古赤峰·中考真题)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE的周长和面积分别是(
A.16,6 B.18,18 C.16.12 D.12,16【答案】C【分析】先论证四边形CFDE是平行四边形,再分别求出CF、CD、DF,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:DF∥CE,DF=CE,∴四边形CFDE是平行四边形,在Rt△ABC中,∠ACB=90°,AB=10,BC=6∴AC=在Rt△ABC中,∠ACB=90°,AB=10,点F是AB∴CF=∵DF∥CE,点F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准产品购销合同
- 科学防碘课件
- 小学生雷电天气安全教育
- 护理持续改进项目案例
- 2025-2030美学综合疗法行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030精炼橄榄油行业市场深度调研及发展前景与投资研究报告
- 2025-2030箱包产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030童装项目可行性研究报告
- 2025-2030空中消防行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030祛斑露产业规划专项研究报告
- 玉盘二部合唱简谱
- 《饲料标签》国标
- PMC部门架构、职责与工作流程
- 广东省浅层地下水功能区划图(共22页)
- 太阳能光伏系统支架通用技术要求
- 实施批准文号管理的中药饮片
- 浅析重复性隐患问题发生的原因及防治措施
- 老年服务与管理专业实习报告
- 厌氧塔计算手册
- 压力管道施工方案(完整版)
- 2021-2021历年专四语法真题参考答案
评论
0/150
提交评论