




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
可以真卷何必模拟祝:都考出好成绩可以真卷何必模拟祝:都考出好成绩七年级上册数学第四单元测试卷及答案B卷北师大版一、选择题(共13小题,每小题4分,满分52分)1、如图,以O为端点的射线有()条. A、3 B、4 C、5 D、62、下列说法错误的是() A、不相交的两条直线叫做平行线 B、直线外一点与直线上各点连接的所有线段中,垂线段最短 C、平行于同一条直线的两条直线平行 D、平面内,过一点有且只有一条直线与已知直线垂直3、一个钝角与一个锐角的差是() A、锐角 B、钝角 C、直角 D、不能确定4、下列说法正确的是() A、角的边越长,角越大 B、在∠ABC一边的延长线上取一点D C、∠B=∠ABC+∠DBC D、以上都不对5、下列说法中正确的是() A、角是由两条射线组成的图形 B、一条射线就是一个周角 C、两条直线相交,只有一个交点D、如果线段AB=BC,那么B叫做线段AB的中点6、同一平面内互不重合的三条直线的交点的个数是() A、可能是0个,1个,2个 B、可能是0个,2个,3个 C、可能是0个,1个,2个或3个 D、可能是1个可3个7、下列说法中,正确的有()①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点. A、1个 B、2个 C、3个 D、4个8、钟表上12时15分钟时,时针与分针的夹角为() A、90° B、82.5° C、67.5° D、60°9、按下列线段长度,可以确定点A、B、C不在同一条直线上的是() A、AB=8cm,BC=19cm,AC=27cm B、AB=10cm,BC=9cm,AC=18cm C、AB=11cm,BC=21cm,AC=10cm D、AB=30cm,BC=12cm,AC=18cm10、下列说法中,正确的个数有()①两条不相交的直线叫做平行线;②两条直线相交所成的四个角相等,则这两条直线互相垂直;③经过一点有且只有一条直线与已知直线平行;④如果直线a∥b,a∥c,则b∥c. A、1个 B、2个 C、3个 D、4个11、下图中表示∠ABC的图是() A、 B、 C、 D、12、下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交 A、1个 B、2个 C、3个 D、4个13、∠1和∠2为锐角,则∠1+∠2满足() A、0°<∠1+∠2<90° B、0°<∠1+∠2<180° C、∠1+∠2<90° D、90°<∠1+∠2<180°二、填空题(共5小题,每小题5分,满分25分)14、如图,点A、B、C、D在直线l上.(1)AC=﹣CD;AB++CD=AD;(2)如图共有条线段,共有条射线,以点C为端点的射线是.15、用三种方法表示如图的角:.16、将一张正方形的纸片,按如图所示对折两次,相邻两条折痕(虚线)间的夹角为度.17、如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是∠AOD=.18、如图,∠AOD=∠AOC+=∠DOB+.三、解答题(共3小题,满分23分)19、如图,M是线段AC的中点,N是线段BC的中点.(1)如果AC=8cm,BC=6cm,求MN的长.(2)如果AM=5cm,CN=2cm,求线段AB的长.20、如图,污水处理厂要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明理由.21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.参考答案及解析一、选择题(共13小题,每小题4分,满分52分)1、如图,以O为端点的射线有()条. A、3 B、4 C、5 D、6考点:直线、射线、线段。专题:常规题型。分析:根据射线的定义可得,一个顶点的每一个方向对应一条射线,由此可得出答案.解答:解:由射线的定义得:有射线,OB(OA)、OC、OD、OE,共4条.故选B.点评:本题考查了射线的知识,难度不大,注意掌握射线的定义是关键.2、下列说法错误的是() A、不相交的两条直线叫做平行线 B、直线外一点与直线上各点连接的所有线段中,垂线段最短 C、平行于同一条直线的两条直线平行 D、平面内,过一点有且只有一条直线与已知直线垂直考点:平行线;垂线;垂线段最短。分析:根据平行线和垂线的定义进行逐一判断即可.解答:解:A、错误,在同一平面内不相交的两条直线叫做平行线;B、正确,符合垂线段的定义;C、正确,是平行线的传递性;D、正确,符合垂线的性质.故选A.点评:本题考查的是平行线的定义、垂线的定义及性质,比较简单.3、一个钝角与一个锐角的差是() A、锐角 B、钝角 C、直角 D、不能确定考点:角的计算。分析:本题是对钝角和锐角的取值的考查.解答:解:一个钝角与一个锐角的差可能是锐角、直角也可能是钝角.故选D.点评:注意角的取值范围.可举例求证推出结果.4、下列说法正确的是() A、角的边越长,角越大 B、在∠ABC一边的延长线上取一点D C、∠B=∠ABC+∠DBC D、以上都不对考点:角的概念。分析:答题时首先理解角的概念,然后对各选项进行判断.解答:解:角的大小与边长无关,故A错误,在∠ABC一边的延长线上取一点D,角的一边是射线,故B错误,∠B=∠ABC+∠DBC,∠B还可能等于∠ABC或∠DBC,故C错误,故选D.点评:本题主要考查角的概念,不是很难.5、下列说法中正确的是() A、角是由两条射线组成的图形 B、一条射线就是一个周角 C、两条直线相交,只有一个交点 D、如果线段AB=BC,那么B叫做线段AB的中点考点:直线、射线、线段;命题与定理。专题:常规题型。分析:需要明确角、周角、线段中点的概念及直线的性质,利用这些知识逐一判断.解答:解:A、两条射线必须有公共端点,故本选项错误;B、周角的特点是两条边重合成射线.但不能说成周角是一条射线,故本选项错误;C、两条直线相交,只有一个交点,故本选项正确;D、只有当点B在线段AC上,且AB=BC时,点B才是线段AB的中点,故本选项错误.故选C.点评:本题考查直线、线段、射线的知识,属于基础题,注意掌握(1)角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.(2)在只用几何语言表述而没有图形的情况下,要注意考虑图形的不同情形.6、同一平面内互不重合的三条直线的交点的个数是() A、可能是0个,1个,2个 B、可能是0个,2个,3个 C、可能是0个,1个,2个或3个 D、可能是1个可3个考点:直线、射线、线段。分析:在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.解答:解:,故选C.点评:本题考查了直线的交点个数问题.7、下列说法中,正确的有()①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点. A、1个 B、2个 C、3个 D、4个考点:直线的性质:两点确定一条直线。分析:根据概念利用排除法求解.解答:解:①是公理,正确;②连接两点的线段的长度叫做两点的距离,错误;③是公理,正确;④点B也可以在AC外,错误;共2个正确.故选B.点评:此题考查较细致,如②中考查了两点间的距离是“连接两点的线段”还是“连接两点的线段的长度”,要注意.相关链接:直线:是点在空间内沿相同或相反方向运动的轨迹,向两个方向无限延伸.公理:两点确定一条直线.线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点.线段有如下性质:两点之间线段最短.两点间的距离:连接两点间线段的长度叫做这两点间的距离.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.8、钟表上12时15分钟时,时针与分针的夹角为() A、90° B、82.5° C、67.5° D、60°考点:钟面角。专题:计算题。分析:钟表里,每一大格所对的圆心角是30°,每一小格所对的圆心角是6°,根据这个关系,画图计算.解答:解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.5°×15=7.5°,分针在数字3上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时15分钟时分针与时针的夹角90°﹣7.5°=82.5°.故选B.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°9、按下列线段长度,可以确定点A、B、C不在同一条直线上的是() A、AB=8cm,BC=19cm,AC=27cm B、AB=10cm,BC=9cm,AC=18cm C、AB=11cm,BC=21cm,AC=10cm D、AB=30cm,BC=12cm,AC=18cm考点:比较线段的长短。分析:若A、B、C在同一条直线上,线段AB、BC、AC间有等量关系.解答:解:A、B、D选项中AB、BC、AC间有等量关系,B选项中AB、BC、AC间没有等量关系,故选B.点评:本题主要考查直线、线段、射线的知识点,比较简单.10、下列说法中,正确的个数有()①两条不相交的直线叫做平行线;②两条直线相交所成的四个角相等,则这两条直线互相垂直;③经过一点有且只有一条直线与已知直线平行;④如果直线a∥b,a∥c,则b∥c. A、1个 B、2个 C、3个 D、4个考点:平行线;垂线;平行公理及推论。分析:本题可从平行线的基本性质和垂线的定义,对选项进行分析,求得答案.解答:解:①两条不相交的直线叫做平行线是在同一平面内才可以成立的,故错误.②两条直线相交所成的四个角相等,则这两条直线互相垂直是正确的,四个角相等为90°.③经过直线外一点有且只有一条直线与已知直线平行,故错误.④如果直线a∥b,a∥c,则b∥c是正确的.故答案为:B.点评:对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.11、下图中表示∠ABC的图是() A、 B、 C、 D、考点:角的概念。分析:根据角的概念,对选项进行一一分析,排除错误答案.解答:解:A、用三个大写字母表示角,表示角顶点的字母在中间,应为∠CAB,故错误;B、角是由有公共的端点的两条射线组成的图形,故错误;C、用三个大写字母表示角,表示角顶点的字母在中间,应为∠ABC,故正确;D、用三个大写字母表示角,表示角顶点的字母在中间,应为∠ACD,故错误.故选C.点评:角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.解题时要善于排除一些似是而非的说法的干扰,选出能准确描述“角”的说法.用三个大写字母表示角,表示角顶点的字母在中间.12、下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交 A、1个 B、2个 C、3个 D、4个考点:平行线;垂线。分析:本题从平行线的定义及平行公理入手,对选项逐一分析即可.解答:解:①不相交的两条直线叫做平行线必须是在同一个平面内才能成立,故错误.②平面内,过一点有且只有一条直线与已知直线垂直是正确的.③平行于同一条直线的两条直线互相平行,故正确.④在同一平面内,两条直线不是平行就是相交是正确的.故答案为C.点评:本题考查平行线的定义及平行公理,需熟练掌握.13、∠1和∠2为锐角,则∠1+∠2满足() A、0°<∠1+∠2<90° B、0°<∠1+∠2<180° C、∠1+∠2<90° D、90°<∠1+∠2<180°考点:角的计算。专题:计算题。分析:由于∠1和∠2为锐角,那么有0°<∠1<90°,0°<∠2<90°,在利用不等式的性质1,可得0°<∠1+∠2<180°.解答:解:∵∠1和∠2为锐角,∴0°<∠1<90°,0°<∠2<90°,∴0°<∠1+∠2<180°,故选B.点评:本题考查了锐角的取值范围和不等式的性质二、填空题(共5小题,每小题5分,满分25分)14、如图,点A、B、C、D在直线l上.(1)AC=AD﹣CD;AB+BC+CD=AD;(2)如图共有6条线段,共有8条射线,以点C为端点的射线是CA、CD.考点:直线、射线、线段。专题:计算题。分析:(1)线段也可以相减,移项后结合图形即可得出答案.(2)根据线段及射线的定义结合图形即可的出答案.解答:解:(1)由图形得:AC=AD﹣CD,AB+BC+CD=AD;(2)线段有:AB,AC,AD,BC,BD,CD,共6条;直线上每个点对应两条射线,射线共有8条,以点C为端点的射线是CA,CD.故答案为:AD,BC;6,8,CA,CD.点评:本题考查射线及线段的知识,属于基础题,掌握基本概念是关键.15、用三种方法表示如图的角:∠C,∠1,∠ACB.考点:角的概念。分析:角的表示方法有:①一个大写字母;②三个大写字母;③阿拉伯数字;④希腊字母.解答:解:图中的角可表示为:∠C,∠1,∠ACB.点评:本题考查了角的表示方法,是基础知识,比较简单.16、将一张正方形的纸片,按如图所示对折两次,相邻两条折痕(虚线)间的夹角为22.5度.考点:翻折变换(折叠问题)。分析:正方形的纸片,按图所示对折两次,两条折痕(虚线)间的夹角为直角的14解答:解:根据题意可得相邻两条折痕(虚线)间的夹角为90÷4=22.5度.点评:本题考查了翻折变换和正方形的性质.17、如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是∠AOD=2α﹣β.考点:角的计算;列代数式;角平分线的定义。分析:由角平分线的定义可得∠1=∠2,∠3=∠4,又有∠MON与∠BOC的大小,进而可求解∠AOD的大小.解答:解:如图,∵OM平分∠AOB,ON平分∠COD,∴∠1=∠2,∠3=∠4,又∠MON=α,∠BOC=β,∴∠2+∠3=α﹣β,∴∠AOD=2∠2+2∠3+∠BOC=2(α﹣β)+β=2α﹣β.故答案为2α﹣β.点评:熟练掌握角平分线的性质及角的比较运算.18、如图,∠AOD=∠AOC+∠COD=∠DOB+∠AOB.考点:角的计算。专题:计算题。分析:如果一条射线在一个角的内部,那么射线所分成的两个小角之和等于这个大角.解答:解:如右图所示,∵∠AOC+∠COD=∠AOD,∠BOD+∠AOB=∠AOD,∴∠AOD=∠AOC+∠COD=∠BOD+∠AOB,故答案是∠COD,∠AOB.点评:本题考查了角的计算.三、解答题(共3小题,满分23分)19、如图,M是线段AC的中点,N是线段BC的中点.(1)如果AC=8cm,BC=6cm,求MN的长.(2)如果AM=5cm,CN=2cm,求线段AB的长.考点:两点间的距离。专题:常规题型。分析:(1)因为M是AC的中点,N是BC的中点,则MC=12AC,CN=1(2)根据中点的概念,分别求出AC、BC的长,然后求出线段AB.解答:解:(1)∵M是AC的中点,N是BC的中点,∴MN=MC+CN=12AC+12BC=则MN=7cm.(2)∵M是线段AC的中点,N是线段BC的中点,若AM=5cm,CN=2cm,∴AB=AC+BC=10+4=14cm.点评:本题主要考查两点间的距离的知识点,能够根据中点的概念,用几何式子表示线段的关系,还要注意线段的和差表示方法.20、如图,污水处理厂要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明理由.考点:轴对称-最短路线问题。分析:可过点M作MN⊥PQ,沿MN铺设排水管道,才能用料最省解答:解:如图因为点到直线间的距离垂线段最短.点评:熟练掌握最短路线的问题,理解点到直线的线段中,垂线段最短.21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.考点:垂线;对顶角、邻补角。专题:计算题。分析:根据对顶角相等得到∠DOF=∠COE,又∠BOF=∠BOD+∠DOF,代入数据计算即可.解答:解:如图,∵∠COE=35°,∴∠DOF=∠COE=35°,∵AB⊥CD,∴∠BOD=90°,∴∠BOF=∠BOD+∠DOF,=90°+35°=125°.一、选择题(每小题4分,共32分)1、按下列线段长度,可以确定点A、B、C不在同一条直线上的是()A、AB=8㎝,BC=19㎝,AC=27㎝;B、AB=10㎝,BC=9㎝,AC=18㎝C、AB=11㎝,BC=21㎝,AC=10㎝;D、AB=30㎝,BC=12㎝,AC=18㎝2、下列推理中,错误的是()A、在m、n、p三个量中,如果m=n,n=p,那么m=p.在∠A、∠B、∠C、∠D四个角中,如果∠A=∠B,∠C=∠D,∠A=∠D,那么∠B=∠C;a、b、c是同一平面内的三条直线,如果a∥b,b∥c,那么a∥c;a、b、c是同一平面内的三条直线,如果a丄b,b丄c,那么a丄c;3、垂直是指一位置特殊的()A、直线B、直角C、线段D、射线4.如图,四条表示方向的射线中,表示北偏东60°的是()5、一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是()A、75°B、105°C、45°D、135°6、同一平面内互不重合的三条直线的公共点的个数是()A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0个,1个,2个或3个D、可能是1个可3个7、已知四边形ABCD中,∠A+∠B=180°,则下列结论中正确的是()A、AB∥CDB、∠B+∠C=180°C、∠B=∠CD、∠C+∠D=180°8、直线a外有一定点A,A到a的距离是5㎝,P是直线a上的任意一点,则()A、AP>5㎝;B、AP≥5㎝;C、AP=5㎝;D、AP<5㎝9、下列说法中正确的是()A、8时45分,时针与分针的夹角是30°B、6时30分,时针与分针重合C、3时30分,时针与分针的夹角是90°D、3时整,时针与分针的夹角是30°10、下列说法正确的是()A、过一点能作已知直线的一条平行线;B、过一点能作已知直线的一条垂线C、射线AB的端点是A和B;D、点可以用一个大写字母表示,也可用小写字母表示二.填空题(本大题共6小题,每小题5分,共30分)11、用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子_____________________,原因是__________________;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是12、如图1,AB的长为m,OC的长为n,MN分别是AB,BC的中点,则MN=_____13、如图2,用“>”、“<”或“=”连接下列各式,并说明理由.AB+BC_____AC,AC+BC_____AB,BC_____AB+AC,理由是__________14、计算:48°39′+67°41′=_________;90°-78°19′40″=___________21°17′×5=_______;176°52′÷3=_________(精确到分)15、如图3中,∠AOB=180°,∠AOC=90°,∠DOE=90°,则图中相等的角有_对,分别为_______________;两个角的和为90°的角有_____对;两个角的和为180°的角有________对.16、面上两条直线的位置关系只有两种,即__________和_________________17、平面面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.18、面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.三、解答下列各题19、要注意“几何语言”的学习,如图甲,称作“点A在直线l外”,请在图乙标上字母,用“几何语言”说出该图的意义(7分)甲A·甲A·l··乙乙20、如图,已知∠AOB,画图并回答:(9分)⑴画∠AOB的平分线OP;⑵在OP上任取两点C、D,过C、D分别画OA、OB的垂线,交OA于E,F,交OB于G、H,A⑶量出CE,CG,DF,DH的长,由此可得到的结论是什么?AOB⑷过C作MC∥OB21、如图,用量角器量出图中∠1,∠2,∠3的度数,猜一猜它们之间有何关系?(8分)22、如图所示,OA丄OB,OC丄OD,OE为∠BOD的平分线,∠BOE=17°18′,求∠AOC的度数(8分)23、如图所示,A、B、C、D、E五个城市,它们之间原有道路相通,现在打算在C、E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?(11分)24、在桌面上放了一个正方体的盒子,一只蚂蚁在顶点A处,它要爬到顶点B处,你能帮助蚂蚁设计一条最短的爬行路线吗?参考答案一、选择题1、B2.D3.A4.B5,C6.C7.D8.B9.D10.B二、填空题11.旋转过一点可以作无数条直线两点确定一条直线12.13、>><,两点之间线段最短14、⑴116°20′⑵11°40′20″;⑶106°25′;⑷58°57′15、3∠AOC=∠BOC,∠BOC=∠DOE,∠DOE=∠AOC4,316、相交平行17、1218、100三.解答题19、20.略21.∠1=∠2+∠322、145°24′23、连结CD和AD,BD的交点处架立交桥2座24、取BB′的中点M,连结CM,MA′,由图中正方体部分展开图及两点之间线段最短选择题1.在有理数的运算中,我们学习了数轴,那么数轴是()A.一条直线B.一条射线C.两条射线D.一条线段2.平面内的三个点A、B、C能确定的直线的条数是()A.1条B.2条C.3条D.1条或3条3.用一副三角板画角,不能画出的角度是()(图1)A.15°B.75°C.145°D.165°(图1)4.图1中,小于平角的角有()A.5个B.6个C.7个D.8个5.下列4个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是()6.上午9时,时针与分针的夹角是()A.60°B.90°C.120°D.150°7.已知A、B两点之间的距离是10cm,C是线段AB上的任意一点,则AC中点与BC中点间距离是()A.3cm B.4cmC.5cm D.不能计算8.如果点C在线段AB上,下列表达式①AC=AB;②AB=2BC;③AC=BC;④AC+BC=AB中,能表示C是线段AB中点的有()A.1个B.2个C.3个D.4个(图2)9.如图2,从A地到C地,可供选择的方案是走水路、陆路和走空中,从A地到B地有2条水路、2条陆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省八所重点中学2025届高考仿真模拟化学试卷含解析
- 2025届济南市重点中学高考化学倒计时模拟卷含解析
- 2025年测试与计量设备项目合作计划书
- 河北省邯郸市2024-2025学年高二下学期第一次联考生物试题(含答案)
- 出血多的护理诊断及措施
- 2025年整熨洗涤设备:洗衣房设备项目合作计划书
- 保险理财讲课课件
- 护士礼仪规范2025
- 江苏省常州市戚墅堰高级中学2025年高考仿真卷化学试卷含解析
- 2025届深圳高级中学高三第二次诊断性检测化学试卷含解析
- 冀教版八年级下册英语全册教学设计
- 2024北京初三一模语文汇编:非连续性文本阅读
- 育婴师培训材料
- 第十七届山东省职业院校技能大赛高职组“动物疫病检疫检验”赛项规程
- 2024秋初中化学九年级下册人教版上课课件 第十一单元 课题2 化学与可持续发展
- 光电产品包装及运输方案创新
- 危重症患者留置管路管理
- DB37T 1389-2024钢箱梁顶推施工技术规范
- 捷信达酒店前台管理系统V8
- 构造地质学期末复习
- 《创伤失血性休克中国急诊专家共识(2023)》解读
评论
0/150
提交评论