




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page1212页,共=sectionpages2828页试卷第=page1111页,共=sectionpages2828页勾股定理的应用1.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端6m处,发现此时绳子底端距离打结处约2m.请设法算出旗杆的高度.【答案】旗杆高8米【分析】设旗杆的高度为x米,由勾股定理得出方程,解方程即可.【详解】解:设旗杆的高度为x米,根据勾股定理,得x2+62=(x+2)2,解得:x=8;答:旗杆的高度为8米.【点睛】本题考查勾股定理的应用,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,从题意中勾画出勾股定理这一数学模型是解决问题的关键.2.如图,有两棵树,一棵高6m,另一棵高2m,两树相距5m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?(结果精确到0.1m)【答案】小鸟至少飞行m.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】解:如图,设大树高为AC=6m,小树高为BD=2m,过B点作BE⊥AC于E,则EBDC是矩形,连接AB,∴EC=2m,EB=5m,AE=AC-EC=6-2=4m,在Rt△AEB中,AB=(m),故小鸟至少飞行m.【点睛】本题考查了勾股定理在实际生活中的应用,本题中找出直角△AEB,并且根据勾股定理正确的计算AB是解题的关键.3.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?【答案】(1)着火点C受洒水影响,理由见解析;(2)能,理由见解析【分析】(1)过点作,垂足为,勾股定理的逆定理证明是直角三角形,进而等面积法求得长度,与500进行比较即可求得答案;(2)以点为圆心,500m为半径作圆,交于点,勾股定理求得,进而求得的长,根据飞机的速度得到飞行时间,再根据题意求得灭火时间,即可解决问题.【详解】(1)着火点C受洒水影响,理由如下,如图,过点作,垂足为,,是直角三角形着火点C受洒水影响。(2)如图,以点为圆心,500m为半径作圆,交于点则在中,着火点C能被扑灭.【点睛】本题考查了勾股定理与勾股定理的逆定理的应用,等腰三角形的性质,根据题意作出图形是解题的关键.4.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”问题:小溪边长着两课棕榈树,恰好隔岸相望,一棵棕榈树CD高是6米,另外一棵AB高4米;AB与CD树干间的距离是10米.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标E.问:这条鱼出现的地方离比较高的棕榈树的树根C有多远?【答案】4米【分析】设EC为x米,BE为(10﹣x)米,利用勾股定理建立方程,求出x的值即可.【详解】解:∵AB=4,DC=6,BC=10,设EC为x米,则BE为(10﹣x)米,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=42+(10﹣x)2,DE2=DC2+EC2=62+x2,又∵AE=DE,∴x2+62=(10﹣x)2+42,x=4,答:这条鱼出现的地方离比较高的棕榈树的树根4米.【点睛】本题考查了勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.5.小渝和小川是一对好朋友,如图,小渝家住A,小川家住B.两家相距10公里,小渝家A在一条笔直的公路AC边上,小川家到这条公路的距离BC为6公里,两人相约在公路D处见面,且两家到见面地点D的距离相等,求小渝家A到见面地点D的距离.
【答案】公里.【分析】先利用勾股定理求出的长,设公里,从而可得的长,再在中,利用勾股定理即可得.【详解】解:由题意得:公里,公里,,,(公里),设公里,则公里,在中,,即,解得(公里),答:小渝家到见面地点的距离为公里.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.6.如图,牧童在离河边3km的A处牧马,小屋位于他南6km东9km的B处,他想把他的马牵到河边饮水,然后回小屋.他要完成此过程所走的最短路程是多少?并在图中画出饮水C所在在位置(保留作图痕迹).【答案】最短路程是;画图见解析.【分析】先作关于的对称点,连接,构建直角三角形,利用勾股定理即可得出答案.【详解】解:如图,作出点关于的对称点,连接交于点,则点是马饮水的位置,根据对称性可得,,则,∴,由已知得,,,在中,由勾股定理求得,即,答:他要完成这件事情所走的最短路程是,饮水所在位置.【点睛】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.7.如图,小明将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆5m处,发现此时绳子末端距离地面1m,求旗杆的高度.(滑轮上方的部分忽略不计)【答案】13m【分析】根据题意构造直角三角形,然后设旗杆高度为xm,根据勾股定理即可求解.【详解】如图,设旗杆高度为m,即,,中,即解得即旗杆的高度为13米.【点睛】本题考查了勾股定理的应用,构造直角三角形是解题的关键.8.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【答案】(1)这个梯子的顶端距地面有24米;(2)梯子的底端在水平方向滑动了8米.【分析】(1)根据勾股定理计算即可;(2)先根据勾股定理算出BC′,再计算即可;【详解】(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.【点睛】本题主要考查了勾股定理的应用,准确分析计算是解题的关键.9.如图,铁路上A、D两点相距28km,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=16km,CD=12km,现在要在铁路AD上建一个土特产品收购站P,使得B、C两村到P站的距离相等,则P站应建在距点A多少千米处?【答案】站应建在距点千米处.【分析】设,则,根据使得,两村到站的距离相等,可得,再根据勾股定理建立方程解答即可.【详解】解:设,则,、两村到站的距离相等,.在中,由勾股定理得,在中,由勾股定理得,,又,,,,答:站应建在距点千米处.【点睛】此题主要考查了勾股定理的应用,根据利用勾股定理建立方程是解决问题的关键.10.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为
多少cm?【答案】15cm【分析】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CE⊥DH于点E,则BC就是蚂蚁到达蜂蜜的最短距离,根据勾股定理即可求得BC的长.【详解】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CE⊥DH于点E,如图所示则DB=AD=4cm由题意及辅助线作法知,M与N分别为GH与DF的中点,且四边形CMHE为长方形∴CE=MH=9cm,EH=CM=4cm∴DE=DH-EH=12-4=8(cm)∴BE=DE+DB=8+4=12(cm)在Rt△BEC中,由勾股定理得:即蚂蚁到达蜂蜜的最短距离为15cm【点睛】本题考查了勾股定理,两点间线段最短,关键是把空间问题转化为平面问题解决,这是数学上一种重要的转化思想.11.如图,将长为2.5米的梯子AB斜靠在墙AO上,BO长0.7米.如果将梯子的顶端A沿墙下滑0.4米,即AM等于0.4米,则梯脚B外移(即BN长)多少米?【答案】梯脚外移0.8米.【分析】直角利用勾股定理求出AO,ON的长,再利用NB=ON-OB,即可求出答案.【详解】解:由题意得:AB=2.5米,BO=0.7米,在Rt△ABO中,由勾股定理得:(米).∴MO=AO-AM=2.4-0.4=2(米),在Rt△MNO中,由勾股定理得:(米).∴NB=ON-OB=1.5-0.7=0.8(米),∴梯脚B外移(即BN长)0.8米.【点睛】本题主要考查了勾股定理的应用,读懂题意,正确应用勾股定理是解题的关键.12.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?【答案】游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.【详解】解:工作人员以0.7米/秒的速度拉绳子,经过10秒拉回绳子米,开始时绳子AC的长为17m,拉了10秒后,绳子CD的长为17-7=10米,在中,米,在中,米,AD=15-6=9米,答:游船移动的距离AD的长是9米.【点睛】本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.13.笔直的河流一侧有一旅游地C,河边有两个漂流点A,B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B在同一直线上),并新修一条路CH,测得BC=5千米,CH=4千米,BH=3千米.(1)判断△BCH的形状,并说明理由;(2)求原路线AC的长.【答案】(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米,在Rt△ACH中,由已知得AC=x,AH=x-3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x-3)2+42,解这个方程,得x=,答:原来的路线AC的长为千米.【点睛】本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.14.如图,某住宅社区在相邻两楼之间修建一个上方是以AB为直径的半圆,下方是长方形的仿古通道,已知AD=2.3米,CD=2米;现有一辆卡车装满家具后,高2.5米,宽1.6米,请问这辆送家具的卡车能否通过这个通道?请说出你的理由.【答案】能通过,见解析【分析】根据题意作出辅助线,利用勾股定理求出EF的长度,然后求出EH的长度,与卡车的高度比较即可判断出卡车能否通过这个通道.【详解】解:∵车宽1.6米,∴卡车能否通过,只要比较距厂门中线0.8米处的高度与车高.在Rt△OEF中,由勾股定理可得:(m),EH=EF+FH=0.6+2.3=2.9>2.5,∴卡车能通过此门.【点睛】此题考查了勾股定理的实际应用,解题的关键是求出EH的长度,然后与卡车的高度进行比较.15.一艘轮船从港向南偏西48°方向航行到达岛,再从岛沿方向航行到达岛,港到航线的最短距离是.(1)若轮船速度为小时,求轮船从岛沿返回港所需的时间.(2)岛在港的什么方向?
【答案】(1)3小时;(2)北偏西【分析】(1)中,利用勾股定理求得的长度,则,然后在中,利用勾股定理来求的长度,再根据时间路程速度即可求得答案;(2)由勾股定理的逆定理推知.由方向角的定义作答.【详解】解:(1)由题意可知,AD⊥BC,在中,,∴,,∵BC=125km,,,∴(小时),∴从岛返回港所需的时间为3小时;(2),,,,,岛在港的北偏西.【点睛】本题考查了勾股定理的应用,方向角问题,是基础知识比较简单.16.如图,A、B两点相距14km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=8km,CB=6km,现在要在AB上建一个供水站E,使得C、D两村到供水站E站的距离相等,则:(1)站应建在距站多少千米处?(2)和垂直吗?说明理由.【答案】(1)E站应建在距A站6千米处;(2)DE和EC垂直,理由见解析【分析】(1)根据使得C,D两村到E站的距离相等,需要证明DE=CE,再根据△DAE≌△EBC,得出AE=BC=6km;(2)DE和EC垂直,利用△DAE≌△EBC,得出∠DEC=90°,进而可以证明.【详解】解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB-AE=(14-x),∵DA=8km,CB=6km,∴x2+82=(14-x)2+62,解得:x=6,∴AE=6km.答:E站应建在距A站6千米处;(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠D=∠CEB,∵∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.【点睛】本题主要考查了勾股定理的应用,证明线段相等利用全等得出△DAE≌△EBC是解决问题的关键.17.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围250km以内为受影响区域.(1)求的度数;(2)海港受台风影响吗?为什么?【答案】(1)90°;(2)受台风影响,理由见解析【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响.【详解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.18.如图,在一棵大树AB的10m高的D处有两只猴子,它们同时发现地面上的点C处有一根香蕉,一只猴子从点D处上爬到树顶点A处,利用拉在点A处的滑绳AC,滑到点C处,另一只猴子从点D处滑到地面点B处,再由点B跑到点C,已知两只猴子所经过的路程都是15m,那么这棵树有多高?【答案】【分析】根据勾股定理列出方程,解方程后即可确定x的值.【详解】解:设树高AB为xm.由题意知BC=15-10=5(m),AD=(x-10)m,AC=15-AD=15-x+10=(25-x)m.在Rt△ABC中,AB2+BC2=AC2,即x2+52=(25-x)2,解得x=12.答:这棵树有12m高.【点睛】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形.19.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千静止的时候,踏板离地高一尺(尺),将它往前推进两步(尺),此时踏板升高离地五尺(尺),求秋千绳索(或)的长度.【答案】秋千绳索的长度为尺.【分析】设OA=OB=x尺,表示出OE的长,在中,利用勾股定理列出关于x的方程求解即可.【详解】解:设尺,由题可知:尺,尺,∴(尺),尺,在中,尺,尺,尺,由勾股定理得:,解得:,则秋千绳索的长度为尺.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,学会利用方程解决问题是解题的关键.20.由于大风,山坡上的一颗甲树从A点处被拦腰折断,其顶点恰好落在一棵树乙的底部C处,如图所示,已知AB=4米,BC=13米,两棵树的水平距离是12米,求甲树原来的高度.【答案】19米【分析】如图所示,过点C作CD⊥AB交AB延长线于D,则根据题意可以得到CD=12米,根据勾股定理即可求出BD的长,再利用勾股定理求出AC的长即可得到AC+AB的长.【详解】解:如图所示,过点C作CD⊥AB交AB延长线于D由题意得:CD=12,AB=4米,BC=13米在Rt△BCD中米∴米在Rt△ACD中米∴米∴甲树原来的高度是19米.【点睛】本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理.21.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?【答案】(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,从而判断出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C作CD⊥AB于D点,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC为直角三角形,∴,∴,∴,∵以台风中心为圆心周围250km以内为受影响区域,∴海港C会受到台风影响;(2)由(1)得CD=240km,如图所示,当EC=FC=250km时,即台风经过EF段时,正好影响到海港C,此时△ECF为等腰三角形,∵,∴EF=140km,∵台风的速度为20km/h,∴140÷20=7h,∴台风影响该海港持续的时间有7h.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.22.一艘轮船从A港向南偏西方向航行到达岛,再从岛沿方向航行到达岛,A港到航线的最短距离是.若轮船速度为,求轮船从岛沿返回A港所需的时间.
【答案】从岛返回A港所需的时间为小时【分析】Rt△ABC中,利用勾股定理求得BD的长度,则CD=BC﹣BD;然后在Rt△ACD中,利用勾股定理来求AC的长度,再根据时间=路程÷速度即可求得答案.【详解】解:由题意,在中,,∴,,,.∴t=.答:从岛返回A港所需的时间为小时.【点睛】本题考查了勾股定理的应用,方向角问题,是基础知识比较简单.23.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米.(假设绳子是直的)【答案】船向岸边移动了9米.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB==15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17-1×7=10(米),∴AD==6(米),∴BD=AB-AD=15-6=9(米),答:船向岸边移动了9米.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.24.一株荷叶高出水面1米,一阵风吹来,荷叶被吹得贴着水面,这时它偏离原来的位置有2米远,如图所示,求荷叶的高度和水面的深度.【答案】荷叶的高度为米,水面的深度为米.【分析】设OA=OB=x米,则OC=(x﹣1)米,在Rt△OBC中,利用勾股定理得:(x﹣1)2+22=x2,解方程即可.【详解】解:设OA=OB=x米,则OC=(x﹣1)米,BC=2米,在Rt△OBC中,由勾股定理得:OC2+BC2=OB2,∴(x﹣1)2+22=x2,解得x=,∴OA=(米),OC=x﹣1=(米),答:荷叶的高度为米,水面的深度为米.【点睛】本题考查了勾股定理的应用,根据题意建立方程是解题的关键.25.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【答案】2.2米【分析】先根据勾股定理求出的长,同理可得出的长,进而可得出结论.【详解】解:在中,,米,米,.在△中,,米,,,,,米,米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.26.如图,在公路的同侧有两个居民点、,居民点、分别到公路的距离千米和千米,且两个居民点、相距千米.(1)要在公路边修一个污水处理站来收集处理居民点、的污水,污水处理站修在什么地方到居民点、所用的水管最短;请你在图中设计出污水处理站的位置.(保留作图痕迹,不要证明)(2)如图铺设水管的工程费用为每千米万元,为使铺设水管的费用最节省,请求出最节省的费用为多少万元?(3)要在公路边修一个汽车站,使汽车站到两个居民点、的距离相等,则点应该修在距点多远的地方(另画图并写出解答过程)【答案】(1)画图见解析;(2)万元;(3);画图见解析【分析】(1)作点A关于CD的对称点,连接,与CD的交点即为所求;
(2)AF⊥BD于点F,过点A′作,交BD延长线于点E,可得,,,利用勾股定理求得,继而由可得答案.
(3)作AB的中垂线,交CD于点M,点M即为所求;设,则,由即,列方程求解可得.【详解】(1)如图1所示,点即为所求.(2)如图1,过点作于点,过点作,交延长线于点,则四边形和四边形均为矩形,,,则,,在中,,,则,所以最节省的费用为(万元).(3)如图,作的中垂线,交于点,则点即为所求;连接、,设,则,,,即,解得:,即点在距离点的地方.【点睛】本题考查了尺规作图,轴对称的性质、线段垂直平分线的性质及勾股定理的应用.27.八年级1班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?【答案】(1)风筝的高度CE为16.6米;(2)往回收线7米.【分析】(1)在中应用勾股定理求得CD,然后利用CE=CD+1.6求解即可;(2)根据题意得到示意图,且根据第(1)问求得DF,然后在中使用勾股定理即可求得BF,最终利用BC-BF即可求解.【详解】(1)在中,根据勾股定理得:(米)∴CE=CD+1.6=15+1.6=16.6(米)
∴CE=16.6(米)(2)根据题意得到下图:∵CD=15∴FD=CD-9=15-9=6(米)∴在中,由勾股定理得:∴BC-BF=17-10=7(米)∴应该往回收线7m.【点睛】本题考查了勾股定理的应用,其中第(2)问一定要注意收线时,人的位置不动,要和梯子滑落问题做好区分.28.如图所示,A、B两块试验田相距200m,C为水源地,AC=160m,BC=120m,为了方便灌溉,现有两种方案修筑水渠.甲方案:从水源地C直接修筑两条水渠分别到A、B;乙方案;过点C作AB的垂线,垂足为H,先从水源地C修筑一条水渠到AB所在直线上的H处,再从H分别向A、B进行修筑.(1)请判断△ABC的形状(要求写出推理过程);(2)两种方案中,哪一种方案所修的水渠较短?请通过计算说明.【答案】(1)△ABC是直角三角形,理由见解析;(2)(2)甲方案所修的水渠较短;理由见解析【分析】(1)由勾股定理的逆定理即可得出△ABC是直角三角形;
(2)由△ABC的面积求出CH,得出AC+BC<CH+AH+BH,即可得出结果.【详解】解:(1)△ABC是直角三角形;理由如下:∴AC2+BC2=1602+1202=40000,AB2=2002=40000,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)甲方案所修的水渠较短;理由如下:∵△ABC是直角三角形,∴△ABC的面积=AB•CH=AC•BC,∴CH=(m),∵AC+BC=160+120=280(m),C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新材料在虚拟现实设备中的应用研究考核试卷
- 海洋油气平台的安全生产标准化建设考核试卷
- 2025年-青海建筑安全员A证考试题库
- 2025年-山东省建筑安全员《C证》考试题库及答案
- 2025年-海南省建筑安全员-B证考试题库附答案
- 2025年安徽省建筑安全员《C证》考试题库及答案
- 2025年-重庆建筑安全员《A证》考试题库及答案
- 2025年建筑安全员-C证考试(专职安全员)题库附答案
- 2025年-湖北省安全员B证考试题库
- 2025年-海南省安全员-B证考试题库附答案
- (二模)温州市2025届高三第二次适应性考试历史试卷(含答案)
- 冷库货物储存合同范本
- 施工应急预案及安全防控措施
- 2024年中国新经济企业top500发展报告
- 2024年北京市房山区初二(下)期中语文试卷及答案
- 部编版小学六年级道德与法治下册单元复习试卷全册(含答案)
- 上海市幼儿园幼小衔接活动指导意见(修订稿)
- 《十万个为什么》整本书阅读-课件-四年级下册语文(统编版)
- GB/T 5231-2001加工铜及铜合金化学成分和产品形状
- DG∕T 154-2022 热风炉
- 我们是共产主义接班人歌词--拼音版本
评论
0/150
提交评论