2025年湘师大新版高一数学上册月考试卷含答案_第1页
2025年湘师大新版高一数学上册月考试卷含答案_第2页
2025年湘师大新版高一数学上册月考试卷含答案_第3页
2025年湘师大新版高一数学上册月考试卷含答案_第4页
2025年湘师大新版高一数学上册月考试卷含答案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年湘师大新版高一数学上册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共7题,共14分)1、已知一个扇形弧长为6,扇形圆心角为2rad;则扇形的面积为()

A.2

B.3

C.6

D.9

2、已知lg2=a,lg3=b;则lg36=()

A.2a+2b

B.4ab

C.2a+3b

D.a2+b2

3、如图所示,在△ABC中,点D是边AB的中点,则向量=()

A.

B.

C.

D.

4、【题文】已知全集U=R,集合A={<1},B=则集合ACUB=

()A.{8,9,10}B.{3,4,5,6,7}C.{2,7,8,9,10}D.{2,8,9,10}5、已知直线a,b都在平面外,则下列推断错误的是()A.B.C.D.6、已知函数f(x)=|x2+bx|(b∈R),当x∈[0,1]时,f(x)的最大值为M(b),则M(b)的最小值是()A.3-2B.4-2C.1D.5-27、已知向量且那么x的值是()A.-3B.3C.D.评卷人得分二、填空题(共5题,共10分)8、用二分法求图象连续不断的函数在区间上的近似解,验证给定精确度取区间的中点计算得则此时零点.(填区间)9、的值为________.10、【题文】将正方形沿对角线折成直二面角,则折起后的大小为____.11、【题文】设则f{f[f(-1)]}=_________12、已知数列{an}和{bn}是项数相同的两个等比数列;c为非零常数,现构造如下4个数列:

①{an+bn};

②{};

③{an+c};

④{an+c•bn}.

其中必为等比数列的是______.评卷人得分三、证明题(共9题,共18分)13、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.14、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.15、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.16、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.17、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.18、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.19、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.20、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.21、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.评卷人得分四、解答题(共2题,共16分)22、(12分)已知函数在R上有定义,对任意实数和任意实数都有(1)求的值;(2)证明:其中和均为常数;(3)当(2)中的时,设讨论在内的单调性并求最小值。23、平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,2)四点,求过A,B,C三点的圆的方程,并判断点D与圆的位置关系.评卷人得分五、计算题(共3题,共6分)24、如图,D是BC上一点,E是AB上一点,AD、CE交于点P,且AE:EB=3:2,CP:CE=5:6,那么DB:CD=____.25、已知a、b满足a2-2a-1=0,b2-2b-1=0,且a≠b,则++1=____.26、(2011•苍南县校级自主招生)已知二次函数y=ax2+bx+c图象如图所示;则下列式子:

ab,ac,a+b+c,a-b+c,2a+b,2a-b中,其值为正的式子共有____个.评卷人得分六、综合题(共4题,共40分)27、取一张矩形的纸进行折叠;具体操作过程如下:

第一步:先把矩形ABCD对折;折痕为MN,如图(1)所示;

第二步:再把B点叠在折痕线MN上;折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图(2)所示;

第三步:沿EB′线折叠得折痕EF;如图(3)所示;利用展开图(4)所示.

探究:

(1)△AEF是什么三角形?证明你的结论.

(2)对于任一矩形;按照上述方法是否都能折出这种三角形?请说明理由.

(3)如图(5);将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k(k<0)

①问:EF与抛物线y=有几个公共点?

②当EF与抛物线只有一个公共点时,设A′(x,y),求的值.28、已知抛物线Y=x2-(m2+4)x-2m2-12

(1)证明:不论m取什么实数;抛物线必与x有两个交点。

(2)m为何值时;x轴截抛物线的弦长L为12?

(3)m取什么实数,弦长最小,最小值是多少?29、(2012•镇海区校级自主招生)如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是____.30、已知抛物线y=x2+4ax+3a2(a>0)

(1)求证:抛物线的顶点必在x轴的下方;

(2)设抛物线与x轴交于A、B两点(点A在点B的右边),过A、B两点的圆M与y轴相切,且点M的纵坐标为;求抛物线的解析式;

(3)在(2)的条件下,若抛物线的顶点为P,抛物线与y轴交于点C,求△CPA的面积.参考答案一、选择题(共7题,共14分)1、D【分析】

因为扇形弧长为6,扇形圆心角为2rad,所以扇形半径等于=3;

则扇形的面积:=9.

故选D.

【解析】【答案】求出扇形的半径;然后求解扇形的面积.

2、A【分析】

lg36=lg62=2lg6=2lg(2×3)=2lg2+2lg3.

∵lg2=a,lg3=b;

∴lg36=2lg2+2lg3=2a+2b.

故选A.

【解析】【答案】直接把lg36用对数式的运算性质展开,化为仅含lg2和lg3的式子,代入lg2=a,lg3=b后答案可求.

3、D【分析】

∵点D是边AB的中点;

∴=

∴=

故选D

【解析】【答案】由已知中点D是边AB的中点,我们易得到=再由向量加法的三角形法则,我们易得到结论.

4、D【分析】【解析】略【解析】【答案】D5、C【分析】【解答】对A;根据直线与平面平行的判定定理知,成立.

对B;结合空间模型可知成立.

对C,显然还可以相交;也可以异面.故错.

对D,因为垂直于同一平面的两条直线互相平行,故D成立.选C.6、A【分析】解:因为函数f(x)=|x2+bx|=|-|;

对称轴x=-当-≤0,即b≥0时;f(x)在[0,1]递增;

故M(b)=f(1)=b+1;

0<-<即-1<b<0时,f(x)的最大值是f(-)或f(1);

令f(-)=>f(1)=b+1,解得:-1<b<2(1-);

故-1<b<2(1-)时,M(b)=

2(1-)<b<0时,M(b)=b+1;

≤-即≤-1时,M(b)=

故M(b)=

故b=2(1-)时,M(b)最小,最小值是3-2

故选:A.

通过讨论b的范围,结合二次函数的性质求出M(b),从而求出M(b)的最小值即可.

本题考查了二次函数的性质以及分类讨论思想;属于中档题.【解析】【答案】A7、B【分析】解:∵向量且

∴=3-x=0;

解得x=3.

故选:B.

利用向量垂直的性质直接求解.

本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.【解析】【答案】B二、填空题(共5题,共10分)8、略

【分析】试题分析:由及可知与异号,与同号,由康恩定理可知:即故填(1,3)。考点:本题考查康恩定理和二分法求零点所在区间。【解析】【答案】(1,3)9、略

【分析】试题分析:故考点:1.诱导公式;2.三角恒等变换.【解析】【答案】10、略

【分析】【解析】

试题分析:在空间图形中,取BD的中点O,连接OA、OC,则所以设正方形的边长为a,则所以∆ADC为等边三角形,所以=

考点:二面角的有关性质。

点评:把一个平面图形折叠成一个几何体,在研究其性质,是考查空间想象能力的一种方法。几何体的展开与折叠问题是考试的热点。做此题的关键是正确画出图像,分析出∆ADC为等边三角形。【解析】【答案】11、略

【分析】【解析】则所以【解析】【答案】12、略

【分析】解:①数列{an}和{bn}各项均相反时,{an+bn}不是等比数列;故①不正确;

②{}组成以为首项,公比为数列{an}和{bn}之比的等比数列;故②正确;

③{an+c}不一定是等比数列,比如an=2n,an+1=2n+1;

④c=1时,由①{an+c•bn}知结论不成立.

故答案为:②

利用等比数列的定义;列举反例,即可得出结论.

等比数列的确定,定义是基础,不成立结论,列举反例即可.【解析】②三、证明题(共9题,共18分)13、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.14、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.15、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.16、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.17、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.18、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.19、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.20、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.21、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.四、解答题(共2题,共16分)22、略

【分析】

令则2分(2)证明:(ⅰ)时,令则4分(ⅱ)时,令则6分7分(3)【解析】

(证明略)在单调递减,在单调递增10分时,12分【解析】略【解析】【答案】(1)23、略

【分析】

利用待定系数法设出圆的一般方程;利用点和圆心的距离和半径的关系进行判断即可.

本题主要考查圆的一般方程的求解以及点和圆的位置关系的判断,利用待定系数法求出圆的方程是解决本题的关键.【解析】解:设圆的一般方程为x2+y2+Dx+Ey+F=0;

∵圆过A;B,C;

∴得D=-2;E=-6,F=5;

则圆的一般方程为x2+y2-2x-6y+5=0;

即标准方程为(x-1)2+(y-3)2=5;

则圆心M(1,3),半径R=

则|DM|===R;

即点D在圆上.五、计算题(共3题,共6分)24、略

【分析】【分析】过E点作EF∥BC,交AD于F.根据平行线分线段成比例得出EF:BD=3:(3+2)=3:5,EF:CD=(6-5):5=1:5=3:15,从而得解.【解析】【解答】解:过E点作EF∥BC;交AD于F.

∵AE:EB=3:2;CP:CE=5:6;

∴EF:BD=3:(3+2)=3:5;EF:CD=(6-5):5=1:5=3:15;

∴DB:CD=5:15=1:3.

故答案为:1:3.25、略

【分析】【分析】由于a、b满足a2-2a-1=0,b2-2b-1=0,所以可以把a、b看作方程x2-2x-1=0的两个根,然后利用根与系数的关系可以得到a+b=2,ab=-1,最后把所求代数式变形代入数值计算即可求解.【解析】【解答】解:∵a、b满足a2-2a-1=0,b2-2b-1=0,且a≠b;

∴a、b可以看作方程x2-2x-1=0的两个根;

∴a+b=2,ab=-1;

∴++1=+1=+1=-5.

故答案为-5.26、略

【分析】【分析】由函数图象可以得到a<0,b>0,c<0,令y=0,方程有两正实根,根据以上信息,判断六个代数式的正负.【解析】【解答】解:从函数图象上可以看到,a<0,b>0;c<0,令y=0,方程有两正实根;

则①ab<0;

②ac>0;

③当x=1时,a+b+c>0;

④当x=-1时,a-b+c<0;

⑤对称轴x=-=1,2a+b=0;

⑥对称轴x=-=1,b>0,2a-b<0.

故答案为2.六、综合题(共4题,共40分)27、略

【分析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半;以及矩形性质得出∠AEF=60°,∠EAF=60°,即可得出答案;

(2)根据矩形的长为a,宽为b,可知时,一定能折出等边三角形,当<b<a时;不能折出;

(3)①由已知得出得到x2+8kx-8k=0,△=(8k)2+32k=32k(2k+1);再分析k即可得出答案;

②得出Rt△EMO∽Rt△A′AD,进而得出,即可求出答案.【解析】【解答】解:(1)△AEF是等边三角形

证明:∵PE=PA;

B′P是RT△AB′E斜边上的中线

∴PA=B′P;

∴∠EAB′=∠PB′A;

又∵PN∥AD;

∴∠B′AD=∠PB′A;

又∵2∠EAB′+∠B′AD=90°;

∴∠EAB′=∠B′AD=30°;

易证∠AEF=60°;∴∠EAF=60°;

∴△AEF是等边三角形;

(2)不一定;

设矩形的长为a,宽为b,可知时;一定能折出等边三角形;

当<b<a时;不能折出;

(3)①由;

得x2+8kx-8k=0,△=(8k)2+32k=32k(2k+1);

∵k<0.

∴k<-时;△>0,EF与抛物线有两个公共点.

当时;EF与抛物线有一个公共点.

当时;EF与抛物线没有公共点;

②EF与抛物线只有一个公共点时,;

EF的表达式为;

EF与x轴、y轴的交点为M(1,0),E(0,);

∵∠EMO=90°-∠OEM=∠EAA′;

∴RT△EMO∽RT△A′AD;

即;

∴.28、略

【分析】【分析】(1)因为△=(m2+4)2-4×1×(-2m2-12),配方后得到△=(m2+8)2,而m2+8>0;得到△>0,即可得到结论;

(2)令y=0,则x2-(m2+4)x-2m2-12,解方程得到x1=m2+6,x2=-2,于是L=x1-x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论