2025年浙教版高一数学上册阶段测试试卷含答案_第1页
2025年浙教版高一数学上册阶段测试试卷含答案_第2页
2025年浙教版高一数学上册阶段测试试卷含答案_第3页
2025年浙教版高一数学上册阶段测试试卷含答案_第4页
2025年浙教版高一数学上册阶段测试试卷含答案_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年浙教版高一数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、某产品的广告费用x与销售额y的统计数据如下表。广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程中的为据此模型预报广告费用为7万元时销售额()A.63.6万元B.65.5万元C.77.9万元D.74.9万元2、设是不同的直线,是不同的平面,有以下四个命题:①②③④其中正确的个数()A.1个B.2个C.3个D.4个3、某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为()A.0.95B.0.7C.0.35D.0.054、过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()A.3条B.2条C.1条D.0条5、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是()A.不增不减B.增加9.5%C.减少9.5%D.减少7.84%6、已知等比数列{an}共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是()A.B.C.2D.评卷人得分二、填空题(共9题,共18分)7、已知tanα,tanβ是方程的两根,若则α+β=____.8、0.25-2+-lg16-2lg5+()=____.9、【题文】幂函数的图像经过点(2,4),则=____10、【题文】已知矩形中,将沿着折成的二面角,则两点的距离为____11、【题文】设命题p:|4x-3|≤1,命题q:x2-(2a+1)x+a(a+1)≤0。若¬p是¬q的必要而不充分条件,则实数a的取值范围是(要求用区间表示)________.12、函数f(x)与g(x)的对应关系如表。

。x-101f(x)132x123g(x)0-11则g[f(-1)]的值为______.13、如图,有一条长为a米的斜坡AB,它的坡角为45°,现保持坡高AC不变,将坡角改为30°,则斜坡AD的长为______米.14、将五进制数3241(5)转化为七进制数是______.15、下列说法正确的是______.

垄脵

任意x隆脢R

都有3x>2x

垄脷

若a>0

且a鈮�1M>0N>0

则有a(M+N)=logaM?logaN

垄脹y=(12)|x|

的最大值为1

垄脺

在同一坐标系中,y=2x

与y=(12)x

的图象关于y

轴对称.评卷人得分三、证明题(共6题,共12分)16、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.17、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.18、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.19、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.20、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.21、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共3题,共12分)22、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.23、画出计算1++++的程序框图.24、请画出如图几何体的三视图.

评卷人得分五、计算题(共3题,共21分)25、把一个六个面分别标有数字1;2,3,4,5,6有正方体骰子随意掷一次,各个数字所在面朝上的机会均相等.

(1)若抛掷一次;则朝上的数字大于4的概率是多少?

(2)若连续抛掷两次,第一次所得的数为m,第二次所得的数为n.把m、n作为点A的横、纵坐标,那么点A(m、n)在函数y=3x-1的图象上的概率又是多少?26、计算:+sin30°.27、设集合A={5,log2(a+3)},集合B={a,b},若A∩B={2},求集合B.评卷人得分六、综合题(共3题,共30分)28、已知抛物线y=ax2-2ax+c-1的顶点在直线y=-上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α2+β2=10.

(1)求这个抛物线的解析式;

(2)设这个抛物线与y轴的交点为P;H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;

(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.29、如图,已知:⊙O1与⊙O2外切于点O,以直线O1O2为x轴,点O为坐标原点,建立直角坐标系,直线AB切⊙O1于点B,切⊙O2于点A,交y轴于点C(0,2),交x轴于点M.BO的延长线交⊙O2于点D;且OB:OD=1:3.

(1)求⊙O2半径的长;

(2)求线段AB的解析式;

(3)在直线AB上是否存在点P,使△MO2P与△MOB相似?若存在,求出点P的坐标与此时k=的值,若不存在,说明理由.30、(1)如图;在等腰梯形ABCD中,AD∥BC,M是AD的中点;

求证:MB=MC.

(2)如图;在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).

①画出△OAB向下平移3个单位后的△O1A1B1;

②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).参考答案一、选择题(共6题,共12分)1、D【分析】【解析】试题分析:由题意,因为方程中为所以所以所以所以当时,考点:线性回归方程.【解析】【答案】D2、B【分析】【解析】试题分析:平行于同一个平面的两个平面一定平行,所以①正确;②中的可能平行于也可能与平面相交,并不一定垂直于平面,所以不正确;③正确;④中可能也在内,所以得不出平行于平面所以不正确.考点:本小题主要考查利用线面和面面平行、垂直的判定定理和性质定理判断直线、平面之间的位置关系,考查学生的逻辑推理能力和思维的严谨性.【解析】【答案】B3、D【分析】【解答】解:根据题意;记“抽到一等品”为事件A,“抽到二等品”为事件B,“抽到不合格品”为事件C;

分析可得“抽到一等品”与“抽到二等品”是互斥事件;

P(A+B)=0.65+0.3=0.95;

“抽到不合格品”与“抽到一等品或二等品”是对立事件;

P(C)=1﹣P(A+B)=1﹣0.95=0.05.

故选D.

【分析】根据题意,分析可得“抽到一等品”与“抽到二等品”是互斥事件,结合题意可得P(A+B),“抽到不合格品”与“抽到一等品或二等品”是对立事件,由对立事件的概率计算可得答案.4、C【分析】【解答】假设存在过点P(﹣2;2)的直线l,使它与两坐标轴围成的三角形的面积为8;

设直线l的方程为:

则.

即2a﹣2b=ab

直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8;

即ab=﹣16;

联立

解得:a=﹣4,b=4.

∴直线l的方程为:

即x﹣y+4=0;

即这样的直线有且只有一条;

故选:C.

【分析】设直线l的方程为:结合直线过点P(﹣2,2)且在第二象限内围成的三角形面积为8,构造方程组,解得直线方程,可得答案.5、D【分析】解:设商品原始价格为1;则第一年年末的价格是120%,第二年年末的价格为120%×120%=144%,第三年年末的价格为144%×80%=115.2%,第四年年末的价格为115.2%×80%=92.16%;

所以商品四年后的价格比原始价格降低了1-92.16%=7.84%.

故选D.

假设原始价格为1;则第一年年末的价格是1+20%,第二年年末的价格为(1+20%)×(1+20%),第三年年末的价格为(1+20%)×(1+20%)×(1-20%),第四年年末的价格为(1+20%)×(1+20%)×(1-20%)×(1-20%),比较可得:四年后的价格比原价格升高?降低?

本题考查了函数中增长率模型的应用,增长率可用函数y=a(1+p)x来表示,其中p为增长率(或减少率).【解析】【答案】D6、C【分析】解:设等比数列{an}的公比为q,∵a1a3a5a7a9=2,a2a4a6a8a10=64;

∴q5=32;解得q=2.

故选:C.

利用等比数列的通项公式即可得出.

本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.【解析】【答案】C二、填空题(共9题,共18分)7、略

【分析】

已知tanα,tanβ是方程的两根,故有tanα+tanβ=3tanα•tanβ=4;

∴tan(α+β)==-.

再由可得α+β=

故答案为.

【解析】【答案】根据一元二次方程根与系数的关系求得tanα+tanβ=3tanα•tanβ=4,再根据两角和的正切公式求得tan(α+β)=的值,再由可得α+β的值.

8、略

【分析】

0.25-2+-lg16-2lg5+()

=+-[lg(×52)]+1

=16+-10+1

=

故答案为:

【解析】【答案】根据负指数和零指数的公式分别化简第一项和第五项;根据幂的乘方的逆运算化简第二项,三;四项,利用对数的运算法则化简,最后求出值即可.

9、略

【分析】【解析】

试题分析:设幂函数为因为的图像经过点(2,4),所以代入得:

考点:幂函数的解析式。

点评:我们要注意区分幂函数的解析式和指数函数的解析式的区别。属于基础题型。【解析】【答案】910、略

【分析】【解析】略【解析】【答案】11、略

【分析】【解析】略【解析】【答案】12、略

【分析】解:由椭圆可知:f(-1)=1;

g[f(-1)]=g(1)=0.

故答案为:0.

直接利用表格;求解函数值即可.

本题考查函数值的求法,考查计算能力.【解析】013、略

【分析】解:解:∵在等腰直角三角形ABC中;斜边|AB|=a;

∴|AC|=a;

又在直角三角形ADC中,∠ADC=30°,|AC|=

∴sin30°==

∴|AD|=a.

故答案为:

依题意,AC=a;在直角三角形ADC中,∠ADC=30°,由三角函数的概念可求得AD的长.

本题考查任意角的三角函数的定义,求得AC=a是关键,考查分析与计算能力,属于基础题.【解析】a14、略

【分析】解:先将“五进制”数3241(5)化为十进制数为3×53+2×52+4×51+1×50=446(10)

然后将十进制的446化为七进制:

446÷7=63余5;

63÷7=9余0;

9÷7=1余2;

1÷7=0余1;

0÷7=0余0;

所以,结果是1205(7)

故答案为:1205(7)

先将“五进制”数化为十进制数;然后将十进制的536化为七进制,即可得到结论.

本题考查的知识点是五进制、十进制与七进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.【解析】1205(7)15、略

【分析】解:对于垄脵x>0

时,有3x>2xx=0

时,有3x=2xx<0

时,有3x<2x

故错;

对于垄脷

若a>0

且a鈮�1M>0N>0

则有a(M+N)=logaM?logaN

错;

对于垄脹隆脽|x|鈮�0

且函数y=2t

在t鈮�0

时递减,隆脿y=(12)|x|

的最大值为1

正确;

对于垄脺

在同一坐标系中,y=2x

与y=(12)x=2鈭�x

的图象关于y

轴对称;正确.

故答案为:垄脹垄脺

垄脵

结合y=3xy=2x

的图象即可判断;

垄脷

根据对数的运算性质判定;

垄脹

由|x|鈮�0

且函数y=2t

递减,即可判断;

垄脺

结合y=2x

与y=(12)x=2鈭�x

的图象即可判断.

本题考查了命题真假的判定,涉及到了函数、对数运算的基础知识,属于中档题.【解析】垄脹垄脺

三、证明题(共6题,共12分)16、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.17、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.18、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.19、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.20、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=21、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、作图题(共3题,共12分)22、略

【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.

∵点A与点A′关于CD对称;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:铺设管道的最省费用为10000元.23、解:程序框图如下:

【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.24、解:如图所示:

【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.五、计算题(共3题,共21分)25、略

【分析】【分析】(1)让大于4的数的个数除以数的总数即为所求的概率;

(2)列举出所有情况,看点A(m、n)在函数y=3x-1的图象上的情况数占总情况数的多少即可.【解析】【解答】解:(1)依题意可知:随意掷一次正方体骰子,面朝上的数可能出现的结果有1、2、3、4、5、6共6种,而且它们出现的可能性相等.满足数字大于4(记为事件A)的有2种.所以P(A)=

(2)依题意列表分析如下:

。第二次n第

m

1234561(11)(12)(13)(14)(15)(16)(16)2(21)(22)(23)(24)(25)(26)(26)3(31)(32)(33)(34)(35)(36)(36)4(41)(42)(43)(44)(45)(46)(46)5(51)(52)(53)(54)(55)(56)(56)6(61)(62)(63)(64)(65)(66)(66)由表可以看出;可能出现的结果有36种,而且它们出现的可能性相等.所得点A(记为事件A)的有(12)和(25)两种情况,所以在函数y=3x-1的图象上的概率为

P(A)==.26、略

【分析】【分析】根据零指数幂、负指数幂、二次根式化简、绝对值、特殊角的三角函数值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解析】【解答】解:原式=2-4+3+1+;

=2.27、A∩B={2};∴2∈A;

又∵A={5,log2(a+3)};

∴2=log2(a+3);∴4=a+3,∴a=1

又∵B={a,b}={1,b},且2∈B,∴b=2;

∴B={1;2}

【分析】【分析】由题意2∈A,2=log2(a+3),求出a,然后确定b,即可解得集合B六、综合题(共3题,共30分)28、略

【分析】【分析】(1)把顶点A的坐标代入直线的解析式得出c=a+;根据根与系数的关系求出c=1-3a,得出方程组,求出方程组的解即可;

(2)求出P、B、C的坐标,BC=4,根据sin∠BCP==,和HK∥BP,得出=,求出PK=t;过H作HG⊥PC于G,根据三角形的面积公式即可求出答案;

(3)根据S=-(t-2)2+2求出S取最大值,作KK′⊥HC于K′,求出KK′和OK′,得到点K的坐标,设所求直线的解析式为y=kx+b,代入得到方程组求出即可.【解析】【解答】解:(1)由y=ax2-2ax+c-1=a(x-1)2+c-1-a得抛物线的顶点为

A(1;c-1-a).

∵点A在直线y=-x+8上;

∴c-1-a=-×1+8;

即c=a+;①

又抛物线与x轴相交于B(α;0);C(β,0)两点;

∴α、β是方程ax2-2ax+c-1=0的两个根.

∴α+β=2,αβ=;

又α2+β2=10,即(α+β)2-2αβ=10;

∴4-2×=10;

即c=1-3a②;

由①②解得:a=-;c=5;

∴y=-x2+x+4;

此时;抛物线与x轴确有两个交点;

答:这个抛物线解析式为:y=-x2+x+4.

(2)由抛物线y=-x2+x+4;

令x=0;得y=4,故P点坐标为(0,4);

令y=0,解得x1=-1,x2=3;

∵α<β;∴B(-1,0),C(3,0);

∴BC=4,又由OC=3,OP=4,得PC=5,sin∠BCP==;

∵BH=t;∴HC=4-t.

∵HK∥BP,=,=;

∴PK=t

如图,过H作HG⊥PC于G,则HG=HC,

sin∠BCP=(4-t)•=(4-t);

∴S=×t×(4-t)=t2+2t;

∵点H在线段BC上且HK∥BP;∴0<t<4.

∴所求的函数式为:S=-t2+2t(0<t<4);

答:将S表示成t的函数为S=-t2+2t(0<t<4).

(3)由S=-t2+2t=-(t-2)2+2(0<t<4);知:

当t=2(满足0<t<4)时;S取最大值,其值为2;

此时;点H的坐标为(1,0);

∵HK∥PB;且H为BC的中点;

∴K为PC的中点;

作KK′⊥HC于K′;

则KK′=PO=2,OK′=CO=;

∴点K的坐标为(;2);

设所求直线的解析式为y=kx+b;则

故所求的解析式为y=4x-4;

答S的最大值是2,S取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论