




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二、z反变换实质:求X(z)幂级数展开式z反变换的求解方法: 围线积分法(留数法) 部分分式法 长除法z反变换:从X(z)中还原出原序列x(n)1、围线积分法(留数法)根据复变函数理论,若函数X(z)在环状区域内是解析的,则在此区域内X(z)可展开成罗朗级数,即 而
其中围线c是在X(z)的环状收敛域内环绕原点的一条反时针方向的闭合单围线。若F(z)在c外M个极点zm,且分母多项式z的阶次比分子多项式高二阶或二阶以上,则:利用留数定理求围线积分,令若F(z)在围线c上连续,在c内有K个极点zk,则:思考:n=0,1时,F(z)在围线c外也无极点,为何2、部分分式展开法X(z)是z的有理分式,可分解成部分分式:对各部分分式求z反变换:3、幂级数展开法(长除法)把X(z)展开成幂级数级数的系数就是序列x(n)根据收敛域判断x(n)的性质,在展开成相应的z的幂级数将X(z)X(z)的 x(n)展成z的分子分母按z的因果序列负幂级数降幂排列左边序列正幂级数升幂排列解:由Roc判定x(n)是因果序列,用长除法展成z的负幂级数解:由Roc判定x(n)是左边序列,用长除法展成z的正幂级数解:X(z)的Roc为环状,故x(n)是双边序列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小区门岗施工合同范本
- 特种租赁合同范本
- 个人钱财赠与合同范本
- 八下第二单元《公民的基本权利义务》知识竞赛教学案例
- 2025商务合作合同范例标准版
- 2025某省汽车改装服务合同
- 《2025年度物流管理系统软件采购与使用合同》
- 轻质砖隔墙合同范本
- 《2025年企业合同续签流程与关键注意事项》
- 2025年建设项目勘察设计合同示范文本
- 高效液相色谱简介及操作课件
- 东荣一矿12 Mta的新井设计矿井冲击矿压及防治措施至煤柱设计智能演变
- 进口第二类、三类医疗器械注册申报资料电子目录
- 脑卒中早识别及预防治疗课件
- 直线和平面平行的性质定理名师优质课赛课一等奖市公开课获奖课件
- 氟橡胶基本课件
- 上海市一模二模或中考数学答题纸
- 桩基础负摩阻计算表格(自动版)
- 幼儿绘本故事:爱书的孩子
- 47页数字孪生人脸识别轨迹分析电子围栏智慧工地解决方案.pptx (2)
- 手术室手卫生PPT课件
评论
0/150
提交评论